化工学报 ›› 2020, Vol. 71 ›› Issue (3): 914-922.DOI: 10.11949/0438-1157.20191064
林帝出1,杨佳薇1,邓玉莹1,戴敏2,郑西来1,彭昌盛1,2()
收稿日期:
2019-09-23
修回日期:
2019-11-03
出版日期:
2020-03-05
发布日期:
2020-03-05
通讯作者:
彭昌盛
基金资助:
Dichu LIN1,Jiawei YANG1,Yuying DENG1,Min DAI2,Xilai ZHENG1,Changsheng PENG1,2()
Received:
2019-09-23
Revised:
2019-11-03
Online:
2020-03-05
Published:
2020-03-05
Contact:
Changsheng PENG
摘要:
滴定-凝胶法制备球形水凝胶吸附材料具有3D倒漏斗状微观形貌结构,孔径分布宽泛,对水体中重金属、染料等污染物具有快速响应机制,已被广泛用于水处理过程研究。综述了滴制法制备球形水凝胶吸附材料的主要过程机理、水凝胶具有的特殊形貌结构及其在水处理过程中的应用,分析了球形水凝胶吸附材料在水处理应用过程中存在的问题和局限,并指出了其在水处理领域的应用前景及发展方向。
中图分类号:
林帝出, 杨佳薇, 邓玉莹, 戴敏, 郑西来, 彭昌盛. 滴定-凝胶法制备球形水凝胶吸附材料及其在废水处理中的应用[J]. 化工学报, 2020, 71(3): 914-922.
Dichu LIN, Jiawei YANG, Yuying DENG, Min DAI, Xilai ZHENG, Changsheng PENG. Fabrication of spherical hydrogel adsorbents via one-step titration-gel method for waste water treatment—a review[J]. CIESC Journal, 2020, 71(3): 914-922.
图2 滴制法制备球形水凝胶吸附材料孔径变化[23] A—外表面;B—内层;C—核心
Fig.2 FE-SEM photograph of variations of pore size distribution of prepared capsules which prepared via OSTGM[23]
水凝胶 | 染料 | 最佳吸附量/(mg/g) | 吸附机制 | 吸附等温模型 | 文献来源 |
---|---|---|---|---|---|
SPSC | MB,CV,MG | 394.08,1756.20,1034.04 | 离子交换及化学键合 | Langmuir,Hill, two-step Langmuir | [ |
SASC | MB | 350.80 | 静电结合 | Langmuir | [ |
SAP | MB | 1255.75 | 静电结合及化学键合 | Langmuir | [ |
A-B 1/1 | MB,CR | 1171,95.55 | 静电结合 | Langmuir,Langmuir | [ |
PHG | MO | 236.9 | 化学键合 | Langmuir | [ |
Alg/Hal_PAMAM | MB,SY | 75.3,22.5 | 化学键合 | Freundlich,Freundlich | [ |
SN5 | CR | 2592 | 静电结合 | Langmuir | [ |
BSA_Au NCs | EY | 245 | 静电结合 | Langmuir | [ |
表1 滴制法制备不同类型水凝胶球对染料吸附性能及吸附机制
Table 1 Adsorption mechanism and removal capacities of prepared hydrogel beads against different dyes
水凝胶 | 染料 | 最佳吸附量/(mg/g) | 吸附机制 | 吸附等温模型 | 文献来源 |
---|---|---|---|---|---|
SPSC | MB,CV,MG | 394.08,1756.20,1034.04 | 离子交换及化学键合 | Langmuir,Hill, two-step Langmuir | [ |
SASC | MB | 350.80 | 静电结合 | Langmuir | [ |
SAP | MB | 1255.75 | 静电结合及化学键合 | Langmuir | [ |
A-B 1/1 | MB,CR | 1171,95.55 | 静电结合 | Langmuir,Langmuir | [ |
PHG | MO | 236.9 | 化学键合 | Langmuir | [ |
Alg/Hal_PAMAM | MB,SY | 75.3,22.5 | 化学键合 | Freundlich,Freundlich | [ |
SN5 | CR | 2592 | 静电结合 | Langmuir | [ |
BSA_Au NCs | EY | 245 | 静电结合 | Langmuir | [ |
水凝胶 | 重金属 | 最佳吸附量/(mg/g) | 吸附机制 | 吸附等温模型 | 文献来源 |
---|---|---|---|---|---|
Mag-Ben/CCS/Alg | Cu(Ⅱ) | 56.79 | 化学键合 | Langmuir | [ |
CCN-Alg | Pb(Ⅱ) | 338.98 | 化学键合 | Langmuir | [ |
FGOCA | Pb(Ⅱ),Hg(Ⅱ) | 602,374 | 化学键合 | Langmuir,Langmuir | [ |
CCM | Cu(Ⅱ),U(Ⅵ) | 143.276,392.692 | 化学键合 | Langmuir,Langmuir | [ |
SCHBs | Cd(Ⅱ) | 95.62 | 化学键合 | Langmuir | [ |
MCSB | Cu(Ⅱ) | 124.53 | 化学键合 | Langmuir | [ |
GAD | Mn(Ⅱ) | 56.49 | 化学键合 | Freundlich | [ |
POSTSC | Ni(Ⅱ) | 76.92 | 氢键结合及化学键合 | Langmuir | [ |
表2 滴制法制备不同类型水凝胶球对重金属吸附性能及吸附机制
Table 2 Adsorption mechanism and removal capacities of prepared hydrogel beads against different heavy metals
水凝胶 | 重金属 | 最佳吸附量/(mg/g) | 吸附机制 | 吸附等温模型 | 文献来源 |
---|---|---|---|---|---|
Mag-Ben/CCS/Alg | Cu(Ⅱ) | 56.79 | 化学键合 | Langmuir | [ |
CCN-Alg | Pb(Ⅱ) | 338.98 | 化学键合 | Langmuir | [ |
FGOCA | Pb(Ⅱ),Hg(Ⅱ) | 602,374 | 化学键合 | Langmuir,Langmuir | [ |
CCM | Cu(Ⅱ),U(Ⅵ) | 143.276,392.692 | 化学键合 | Langmuir,Langmuir | [ |
SCHBs | Cd(Ⅱ) | 95.62 | 化学键合 | Langmuir | [ |
MCSB | Cu(Ⅱ) | 124.53 | 化学键合 | Langmuir | [ |
GAD | Mn(Ⅱ) | 56.49 | 化学键合 | Freundlich | [ |
POSTSC | Ni(Ⅱ) | 76.92 | 氢键结合及化学键合 | Langmuir | [ |
Abbreviation | Meaning | Abbreviation | Meaning |
---|---|---|---|
A-B 1/1 | SA/halloysite polyamidoamine | MCSB | magnetic chitosan/SA bead |
Alg/Hal_PAMAM | chitosan | MG | malachite green |
APS | one-step titration gel method | MO | methyl orange |
Au NCs | liquid-liquid phase separation technique | ORII | orange Ⅱ |
BSA | bovine serum albumin | OSTGM | one-step titration gel method |
CAG CCM | calcium alginate gel calcium alginate coated chitosan | PAMPS | post-cross-linked 2-acrylamido-2-methylpropa-1-propanesulfonic acid |
CCN-Alg | carboxylated cellulose nanocrystal-SA | PHG | polypyrrole hydrogel |
CR | Congo red | POSTSC | post-micellar-chitosan beads |
CS | chitosan | PS-I | PVA-SA droplets after first cross-linking |
CS/Gel-GN | CS/gelatin- graphite | PVA | polyvinyl alcohol |
CV | crystal violet | SA | sodium alginate |
EY | Eosin yellow | SAP | single network SA/PVA bead |
FC-IPNs | full cross-linking inter-penetrating polymer networks | SASC | SA-SiO2 capsule |
FGOCA | functionalization GO embedded calcium alginate | SCHBs | straw cellulose hydrogel beads |
GA | glutaraldehyde | SC-IPNs | semi cross-linking interpenetrating polymer networks |
GAD | GO/SA double network | SN5 | CS-SDS-5%(mass) NaOH |
GO | graphene oxide | SPSC | SA-PVA-SiO2 capsule |
LLPST | liquid-liquid phase separation technique | SY | sun set yellow |
Mag-Ben/CCS/Alg | magnetic bentonite/carboxy-methyl chitosan/SA | Zr-GO/Alg | zirconium-crosslinked GO/SA |
MB | methylene blue | ZVI | zero-valent iron |
附表 缩写对照
Appendix Abbreviations for some materials and reagents
Abbreviation | Meaning | Abbreviation | Meaning |
---|---|---|---|
A-B 1/1 | SA/halloysite polyamidoamine | MCSB | magnetic chitosan/SA bead |
Alg/Hal_PAMAM | chitosan | MG | malachite green |
APS | one-step titration gel method | MO | methyl orange |
Au NCs | liquid-liquid phase separation technique | ORII | orange Ⅱ |
BSA | bovine serum albumin | OSTGM | one-step titration gel method |
CAG CCM | calcium alginate gel calcium alginate coated chitosan | PAMPS | post-cross-linked 2-acrylamido-2-methylpropa-1-propanesulfonic acid |
CCN-Alg | carboxylated cellulose nanocrystal-SA | PHG | polypyrrole hydrogel |
CR | Congo red | POSTSC | post-micellar-chitosan beads |
CS | chitosan | PS-I | PVA-SA droplets after first cross-linking |
CS/Gel-GN | CS/gelatin- graphite | PVA | polyvinyl alcohol |
CV | crystal violet | SA | sodium alginate |
EY | Eosin yellow | SAP | single network SA/PVA bead |
FC-IPNs | full cross-linking inter-penetrating polymer networks | SASC | SA-SiO2 capsule |
FGOCA | functionalization GO embedded calcium alginate | SCHBs | straw cellulose hydrogel beads |
GA | glutaraldehyde | SC-IPNs | semi cross-linking interpenetrating polymer networks |
GAD | GO/SA double network | SN5 | CS-SDS-5%(mass) NaOH |
GO | graphene oxide | SPSC | SA-PVA-SiO2 capsule |
LLPST | liquid-liquid phase separation technique | SY | sun set yellow |
Mag-Ben/CCS/Alg | magnetic bentonite/carboxy-methyl chitosan/SA | Zr-GO/Alg | zirconium-crosslinked GO/SA |
MB | methylene blue | ZVI | zero-valent iron |
1 | Qi X , Wei W , Shen J , et al . Salecan polysaccharide-based hydrogels and their applications: a review[J]. Journal of Materials Chemistry B, 2019, 7(16): 2577-2587. |
2 | Wang B , Wan Y , Zheng Y , et al . Alginate-based composites for environmental applications: a critical review[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(4): 318-356. |
3 | Thakur S , Govender P P , Mamo M A , et al . Progress in lignin hydrogels and nanocomposites for water purification: future perspectives[J]. Vacuum, 2017, 146: 342-355. |
4 | Thakur S , Govender P P , Mamo M A , et al . Recent progress in gelatin hydrogel nanocomposites for water purification and beyond[J]. Vacuum, 2017, 146: 396-408. |
5 | Shojaeiarani J , Bajwa D , Shirzadifar A . A review on cellulose nanocrystals as promising biocompounds for the synthesis of nanocomposite hydrogels[J]. Carbohydrate Polymers, 2019, 216: 247-259. |
6 | Mohammadzadeh P P , Peighambardoust S J . A review on acrylic based hydrogels and their applications in wastewater treatment[J]. Journal of Environmental Management, 2018, 217: 123-143. |
7 | Chen T , Shi P , Zhang J , et al . Natural polymer konjac glucomannan mediated assembly of graphene oxide as versatile sponges for water pollution control[J]. Carbohydrate Polymers, 2018, 202: 425-433. |
8 | Buslovich A , Horev B , Shebis Y , et al . A facile method for the deposition of volatile natural compound-based nanoparticles on biodegradable polymer surfaces[J]. Journal of Materials Chemistry B, 2018, 6(15): 2240-2249. |
9 | Hou D , Ding C , Li K , et al . A novel dual-layer composite membrane with underwater-superoleophobic/hydrophobic asymmetric wettability for robust oil-fouling resistance in membrane distillation desalination[J]. Desalination, 2018, 428: 240-249. |
10 | Pandele A M , Ionita M , Crica L , et al . Novel chitosan-poly(vinyl alcohol)/graphene oxide biocomposites 3D porous scaffolds[J]. Composites Part B: Engineering, 2017, 126: 81-87. |
11 | Li Y , Xue J , Zhang X , et al . Formation of macrovoid-free PMDA-MDA polyimide membranes using a gelation/non-solvent-induced phase separation method for organic solvent nanofiltration[J]. Industrial & Engineering Chemistry Research, 2019, 58(16): 6712-6720. |
12 | Malaekeh-Nikouei B , Ghaeni F A , Motamedshariaty V S , et al . Controlled release of prednisolone acetate from molecularly imprinted hydrogel contact lenses[J]. Journal of Applied Polymer Science, 2012, 126(1): 387-394. |
13 | Gao X , Yin Y , Yan J , et al . Separation, biochemical characterization and salt-tolerant mechanisms of alkaline protease from Aspergillus oryzae [J]. Journal of the Science of Food and Agriculture, 2019, 99(7): 3359-3366. |
14 | Zhao N , Wu F , Xing Y , et al . Flexible hydrogel electrolyte with superior mechanical properties based on poly(vinyl alcohol) and bacterial cellulose for the solid-state zinc–air batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(17): 15537-15542. |
15 | Qi M , Zhao K , Bao Q , et al . Adsorption and electrochemical detection of bovine serum albumin imprinted calcium alginate hydrogel membrane[J]. Polymers, 2019, 11(4): 622. |
16 | Du H , Shi S , Liu W , et al . Hydrophobic-force-driven adsorption of bisphenol A from aqueous solution by polyethylene glycol diacrylate hydrogel microsphere[J]. Environmental Science and Pollution Research, 2019, 26(22): 22362-22371. |
17 | Tekay E , Aydinoglu D , Sen S . Effective adsorption of Cr(Ⅵ) by high strength chitosan/montmorillonite composite hydrogels involving spirulina biomass/microalgae[J]. Journal of Polymers and the Environment, 2019, 27(8): 1828-1842. |
18 | Lin D , Shi M , Zhang Y , et al . 3D crateriform and honeycomb polymer capsule with nano re-entrant and screen mesh structures for the removal of multi-component cationic dyes from water[J]. Chemical Engineering Journal, 2019, 375: 121911. |
19 | Mathur A M , Moorjani S K , Scranton A B . Methods for synthesis of hydrogel networks: a review[J]. Journal of Macromolecular Science, Part C, 1996, 36(2): 405-430. |
20 | Ahmed E M . Hydrogel: preparation, characterization, and applications: a review[J]. Journal of Advanced Research, 2015, 6(2): 105-121. |
21 | Arshady R . Suspension, emulsion, and dispersion polymerization — a methodological survey[J]. Colloid and Polymer Science, 1992, 270(8): 717-732. |
22 | Huang X , Brittain W J . Synthesis and characterization of PMMA nanocomposites by suspension and emulsion polymerization[J]. Macromolecules, 2001, 34(10): 3255-3260. |
23 | Lin D , Shi M , Wei X , et al . Development of an innovative capsule with three-dimension honeycomb architecture via one-step titration-gel method for the removal of methylene blue[J]. International Journal of Biological Macromolecules, 2019, 128: 911-922. |
24 | Lin D C , Shi M , Cao Y , et al . Fabrication of SA-SiO2 capsules with 3D microscopic re-entrant structures via one-step titration-gel method for the removal of methylene blue from water[J]. Express Polymer Letters, 2019, 13(4): 311-326. |
25 | Ali I , Peng C , Lin D , et al . Encapsulated green magnetic nanoparticles for the removal of toxic Pb2+ and Cd2+ from water: development, characterization and application[J]. Journal of Environmental Management, 2019, 234: 273-289. |
26 | Ali I , Peng C , Naz I , et al . Development and application of novel bio-magnetic membrane capsules for the removal of the cationic dye malachite green in wastewater treatment[J]. RSC Advances, 2019, 9(7): 3625-3646. |
27 | Zhang X , Cheng C , Zhao J , et al . Polyethersulfone enwrapped graphene oxide porous particles for water treatment[J]. Chemical Engineering Journal, 2013, 215/216: 72-81. |
28 | Shao Z , Huang X , Yang F , et al . Engineering sodium alginate-based cross-linked beads with high removal ability of toxic metal ions and cationic dyes[J]. Carbohydrate Polymers, 2018, 187: 85-93. |
29 | Tong D , Fang K , Yang H , et al . Efficient removal of copper ions using a hydrogel bead triggered by the cationic hectorite clay and anionic sodium alginate[J]. Environmental Science and Pollution Research, 2019, 26(16): 16482-16492. |
30 | Karzar J M , Mahkam M . Magnetic nano carboxymethyl cellulose-alginate/chitosan hydrogel beads as biodegradable devices for controlled drug delivery[J]. International Journal of Biological Macromolecules, 2019, 135: 829-838. |
31 | Bremond N , Santanach-Carreras E , Chu L , et al . Formation of liquid-core capsules having a thin hydrogel membrane: liquid pearls[J]. Soft Matter, 2010, 6(11): 2484-2488. |
32 | Patil J S , Kamalapur M V , Marapur S C , et al . Ionotropic gelation and polyelectrolyte complexation: the novel techniques to design hydrogel particulate sustained, modulated drug delivery system: a review[J]. Digest Journal of Nanomaterials and Biostructures, 2010, 5(1): 241-248. |
33 | Rolland L , Santanach-Carreras E , Delmas T , et al . Physicochemical properties of aqueous core hydrogel capsules[J]. Soft Matter, 2014, 10(48): 9668-9674. |
34 | Liang W , Yang C , Wen G , et al . A facile and controllable method to encapsulate phase change materials with non-toxic and biocompatible chemicals[J]. Applied Thermal Engineering, 2014, 70(1): 817-826. |
35 | Nofar M , Tabatabaei A , Sojoudiasli H , et al . Mechanical and bead foaming behavior of PLA-PBAT and PLA-PBSA blends with different morphologies[J]. European Polymer Journal, 2017, 90: 231-244. |
36 | Aydogdu A , Sumnu G , Sahin S . A novel electrospun hydroxypropyl methylcellulose/polyethylene oxide blend nanofibers: morphology and physicochemical properties[J]. Carbohydrate Polymers, 2018, 181: 234-246. |
37 | Zheng B , Zhang Z , Chen F , et al . Impact of delivery system type on curcumin stability: comparison of curcumin degradation in aqueous solutions, emulsions, and hydrogel beads[J]. Food Hydrocolloids, 2017, 71: 187-197. |
38 | Ago M , Tardy B L , Wang L , et al . Supramolecular assemblies of lignin into nano- and microparticles[J]. MRS Bulletin, 2017, 42(5): 371-378. |
39 | Shang L , Cheng Y , Zhao Y . Emerging droplet microfluidics[J]. Chemical Reviews, 2017, 117(12): 7964-8040. |
40 | Trivedi P , Schaller J , Gustafsson J , et al . Supramolecular design of cellulose hydrogel beads[J]. Journal of Renewable Materials, 2017, 5(5): 400-409. |
41 | Fang W , Liu L , Li T , et al . Electrospun N-substituted polyurethane membranes with self-healing ability for self-cleaning and oil/water separation[J]. Chemistry-A European Journal, 2016, 22(3): 878-883. |
42 | Gulyuz U , Okay O . Self-healing poly(acrylic acid) hydrogels with shape memory behavior of high mechanical strength[J]. Macromolecules, 2014, 47(19): 6889-6899. |
43 | Shao Z , Huang X , Yang F , et al . Engineering sodium alginate-based cross-linked beads with high removal ability of toxic metal ions and cationic dyes[J]. Carbohydrate Polymers, 2018, 187: 85-93. |
44 | Li L , Xiao J , Wang Z , et al . Preparation of polyvinyl alcohol/chitosan/graphene oxide composite hydrogel and application in removal of Pb(Ⅱ) from aqueous solution[J]. New Chemical Materials, 2016, 44(4): 112-115. |
45 | Kong Y , Zhuang Y , Han Z , et al . Dye removal by eco-friendly physically cross-linked double network polymer hydrogel beads and their functionalized composites[J]. Journal of Environmental Sciences, 2019, 78: 81-91. |
46 | Oussalah A , Boukerroui A , Aichour A , et al . Cationic and anionic dyes removal by low-cost hybrid alginate/natural bentonite composite beads: adsorption and reusability studies[J]. International Journal of Biological Macromolecules, 2019, 124: 854-862. |
47 | Wu M , Chen W , Mao Q , et al . Facile synthesis of chitosan/gelatin filled with graphene bead adsorbent for orange Ⅱ removal[J]. Chemical Engineering Research and Design, 2019, 144: 35-46. |
48 | Ye X , Xu Q , Xu J . Oxidant-templating fabrication of pure polypyrrole hydrogel beads as a highly efficient dye adsorbent[J]. RSC Advances, 2019, 9(11): 5895-5900. |
49 | Kurczewska J , Cegłowski M , Schroeder G . Alginate/PAMAM dendrimer – halloysite beads for removal of cationic and anionic dyes[J]. International Journal of Biological Macromolecules, 2019, 123: 398-408. |
50 | Chatterjee S , Tran H N , Godfred O , et al . Supersorption capacity of anionic dye by newer chitosan hydrogel capsules via green surfactant exchange method[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3604-3614. |
51 | Upadhyay A , Rao C P . Porous, pH-responsive, and reusable hydrogel beads of bovine serum albumin_Au hybrid as smart nanofactories for the removal of organic and inorganic pollutants from water: a detailed demonstration by spectroscopy and microscopy[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 7965-7973. |
52 | Zhang H , Omer A M , Hu Z , et al . Fabrication of magnetic bentonite/carboxymethyl chitosan/sodium alginate hydrogel beads for Cu (Ⅱ) adsorption[J]. International Journal of Biological Macromolecules, 2019, 135: 490-500. |
53 | Hu Z , Omer A M , Ouyang X K , et al . Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(Ⅱ) from aqueous solution[J]. International Journal of Biological Macromolecules, 2018, 108: 149-157. |
54 | Arshad F , Selvaraj M , Zain J , et al . Polyethylenimine modified graphene oxide hydrogel composite as an efficient adsorbent for heavy metal ions[J]. Separation and Purification Technology, 2019, 209: 870-880. |
55 | Yi X , He J , Guo Y , et al . Encapsulating Fe3O4 into calcium alginate coated chitosan hydrochloride hydrogel beads for removal of Cu (Ⅱ) and U (Ⅵ) from aqueous solutions[J]. Ecotoxicology and Environmental Safety, 2018, 147: 699-707. |
56 | Wang F , Li J , Su Y , et al . Adsorption and recycling of Cd(Ⅱ) from wastewater using straw cellulose hydrogel beads[J]. Journal of Industrial and Engineering Chemistry, 2019, 80: 361-369. |
57 | Tao H , Li S , Zhang L , et al . Magnetic chitosan/sodium alginate gel bead as a novel composite adsorbent for Cu(Ⅱ) removal from aqueous solution[J]. Environmental Geochemistry and Health, 2019, 41(1SI): 297-308. |
58 | Yang X , Zhou T , Ren B , et al . Removal of Mn (Ⅱ) by sodium alginate/graphene oxide composite double-network hydrogel beads from aqueous solutions[J]. Scientific Reports, 2018, 8(1): 10717. |
59 | Kongarapu R J , Nayak A K , Khobragade M U , et al . Surfactant bilayer on chitosan bead surface for enhanced Ni(Ⅱ) adsorption[J]. Sustainable Materials and Technologies, 2018, 18: e00077. |
60 | Chen S , Hu J , Shi J , et al . Composite hydrogel particles encapsulated ammonium molybdophosphate for efficiently cesium selective removal and enrichment from wastewater[J]. Journal of Hazardous Materials, 2019, 371: 694-704. |
61 | Shan S , Tang H , Zhao Y , et al . Highly porous zirconium-crosslinked graphene oxide/alginate aerogel beads for enhanced phosphate removal[J]. Chemical Engineering Journal, 2019, 359: 779-789. |
62 | Pal P , Edathil A A , Banat F . Calcium alginate gel and hard beads for the removal of total organic acid anions and heavy metal ions from industrial lean methyldiethanolamine solvent[J]. Polymer Bulletin, 2019, 76(1): 103-118. |
63 | Sahraei R , Sekhavat P Z , Ghaemy M . Novel magnetic bio-sorbent hydrogel beads based on modified gum tragacanth/graphene oxide: removal of heavy metals and dyes from water[J]. Journal of Cleaner Production, 2017, 142: 2973-2984. |
64 | Pu S , Ma H , Zinchenko A , et al . Novel highly porous magnetic hydrogel beads composed of chitosan and sodium citrate: an effective adsorbent for the removal of heavy metals from aqueous solutions[J]. Environmental Science and Pollution Research, 2017, 24(19SI): 16520-16530. |
65 | Vijayalakshmi K , Devi B M , Latha S , et al . Batch adsorption and desorption studies on the removal of lead (Ⅱ) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads[J]. International Journal of Biological Macromolecules, 2017, 104: 1483-1494. |
66 | Li M , Wang Z , Li B . Adsorption behaviour of congo red by cellulose/chitosan hydrogel beads regenerated from ionic liquid[J]. Desalination and Water Treatment, 2016, 57(36): 16970-16980. |
67 | Ma J , Liu Y , Ali O , et al . Fast adsorption of heavy metal ions by waste cotton fabrics based double network hydrogel and influencing factors insight[J]. Journal of Hazardous Materials, 2018, 344: 1034-1042. |
68 | Lu T , Xiang T , Huang X , et al . Post-crosslinking towards stimuli-responsive sodium alginate beads for the removal of dye and heavy metals[J]. Carbohydrate Polymers, 2015, 133: 587-595. |
69 | Yue Y , Han J , Han G , et al . Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: core-shell structure formation and property characterization[J]. Carbohydrate Polymers, 2016, 147: 155-164. |
70 | Kong W , Yue Q , Li Q , et al . Adsorption of Cd2+ on GO/PAA hydrogel and preliminary recycle to GO/PAA-CdS as efficient photocatalyst[J]. Science of the Total Environment, 2019, 668: 1165-1174. |
71 | Xu Y , Zhu B K , Xu Y Y . A study on formation of regular honeycomb pattern in polysulfone film[J]. Polymer, 2005, 46(3): 713-717. |
72 | Li L , Chen C , Li J , et al . Robust and hydrophilic polymeric films with honeycomb pattern and their cell scaffold applications[J]. Journal of Materials Chemistry, 2009, 19(18): 2789-2796. |
73 | Wang Z , Cheng W , Ma J , et al . Condensed solute droplets templated honeycomb pattern on polymer films[J]. Journal of Colloid and Interface Science, 2014, 436: 16-18. |
74 | Bui V , Thuy L T , Tran Q C , et al . Ordered honeycomb biocompatible polymer films via a one-step solution-immersion phase separation used as a scaffold for cell cultures[J]. Chemical Engineering Journal, 2017, 320: 561-569. |
[1] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[4] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[5] | 徐文杰, 贾献峰, 王际童, 乔文明, 凌立成, 王任平, 余子舰, 张寅旭. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583. |
[6] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[7] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[8] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[9] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[10] | 谢诗婷, 刘壮, 谢锐, 巨晓洁, 汪伟, 潘大伟, 褚良银. 聚(N-异丙基丙烯酰胺-共聚-烯丙基硫脲)智能微凝胶的制备及其Hg2+响应性能的研究[J]. 化工学报, 2023, 74(6): 2689-2698. |
[11] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[12] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[13] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[14] | 范坤阳, 杨景兴, 许海波, 连兴容, 何凤梅, 陈聪慧, 李增耀. 遮光剂掺杂SiO2气凝胶传热的统一格子Boltzmann模型研究[J]. 化工学报, 2023, 74(5): 1974-1981. |
[15] | 肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||