1 |
蔡翔舟, 戴志敏, 徐洪杰. 钍基熔盐堆核能系统[J]. 物理, 2016, 45(9): 578-590.
|
|
Cai X Z, Dai Z M, Xu H J. Thorium molten salt reactor nuclear energy system[J]. Physics, 2016, 45(9): 578-590.
|
2 |
Rosenthal M W, Briggs R B, Kasten P R. Molten salt reactor program semiannual progress report (ORNL-4449)[R]. USA: Oak Ridge National Laboratory, 1969.
|
3 |
Williams D F, Toth L M, Clarno K T. Assessment of candidate molten salt coolants for the advanced high-temperature reactor (ORNL/TM-2006/12)[R]. USA: Oak Ridge National Laboratory, 2006.
|
4 |
Forsberg C W, Peterson P F, Pickard P S. Molten-salt-cooled advanced high-temperature reactor for production of hydrogen and electricity[J]. Nuclear Technology, 2003, 144(3): 289-302.
|
5 |
Hargraves R, Moir R. Liquid fluoride thorium reactors: an old idea in nuclear power gets reexamined[J]. American Scientist, 2010, 98(4): 304-313.
|
6 |
Petti D A, Smolik G R, Simpson M F, et al. JUPITER-Ⅱ molten salt Flibe research: an update on tritium, mobilization and redox chemistry experiments[J]. Fusion Engineering and Design, 2006, 81(8-14): 1439-1449.
|
7 |
曾友石, 杜林, 皮力, 等. 氢在FLiNaK(LiF-NaF-KF)熔盐中的渗透行为[J]. 核技术, 2015, 38(2): 73-78.
|
|
Zeng Y S, Du L, Pi L, et al. Hydrogen permeation behavior in FLiNaK(LiF-NaF-KF) molten salt[J]. Nuclear Techniques, 2015, 38(2): 73-78.
|
8 |
Calderoni P, Sharpe P, Hara M, et al. Measurement of tritium permeation in Flibe (2LiF-BeF2)[J]. Fusion Engineering & Design, 2008, 83(7): 1331-1334.
|
9 |
Anderl R A, Fukada S, Smolik G R, et al. Deuterium\tritium behavior in Flibe and Flibe-facing materials[J]. Journal of Nuclear Materials, 2004, 329(part B): 1327-1331.
|
10 |
Mathews A L, Baes C F. Oxide chemistry and thermodynamics of molten lithium fluoride-beryllium fluoride solutions[J]. Inorganic Chemistry, 1968, 7(2): 373-382.
|
11 |
Iwamoto N, Tsunawaki Y, Umesaki N, et al. Self diffusion of lithium in molten LiBeF3 and Li2BeF4[J]. Journal of the Chemical Society Faraday Transactions, 1979, 75(9): 1277-1283.
|
12 |
Ohmichi T, Ohno H, Furukawa K. Self-diffusion of fluorine in molten dilithium tetrafluoroberyllate[J]. The Journal of Physical Chemistry, 1976, 80(14): 1628-1631.
|
13 |
Robbins G D, Braunstein J. Molten salt reactor program semiannual progress report for period ending february 29(ORNL-4254)[R]. USA: Oak Ridge National Laboratory, 1968.
|
14 |
朱宇, 陆小华, 丁皓, 等. 分子模拟在化工应用中的若干问题及思考[J]. 化工学报, 2004, 55(8): 1213-1223.
|
|
Zhu Y, Lu X H, Ding H, et al. Molecular simulation in chemical engineering[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(8): 1213-1223.
|
15 |
Rahman A. Structure and motion in liquid BeF2, LiBeF3, and LiF from molecular dynamics calculations[J]. Journal of Chemical Physics, 1972, 57(7): 3010.
|
16 |
Heaton R, Brooks R, Madden P, et al. A first-principles description of liquid BeF2 and its mixtures with LiF: potential development and pure BeF[J]. Journal of Physical Chemistry B, 2006, 110(23): 11454-11460.
|
17 |
Salanne M, Simon C, Turq P, et al. A first-principles description of liquid BeF2 and its mixtures with LiF2: network formation in LiF-BeF2[J]. The Journal of Physical Chemistry B, 2006, 110(23): 11461-11467.
|
18 |
Wilson M, Madden P A. Polarization effects in ionic systems from first principles[J]. Journal of Physics Condensed Matter, 1993, 5(17): 2687-2706.
|
19 |
Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744.
|
20 |
Nam H O, Bengtson A, Vortler K, et al. First-principles molecular dynamics modeling of the molten fluoride salt with Cr solute[J]. Journal of Nuclear Materials, 2014, 449(1/2/3): 148-157.
|
21 |
宁汇, 侯民强, 杨德重. 二元混合离子液体的电导率与离子间的缔合作用[J]. 物理化学学报, 2013, 29(10): 2107-2113.
|
|
Ning H, Hou M Q, Yang D Z. Ionic association in binary ionic liquids by conductivity[J]. Acta Physico-Chimica Sinica, 2013, 29(10): 2107-2113.
|
22 |
Klix A, Suzuki A, Terai T. Study of tritium migration in liquid Li2BeF4 with ab initio molecular dynamics[J]. Fusion Engineering and Design, 2006, 81(1-7): 713-717.
|
23 |
Becke A D P. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Physical Review A, 1988, 38(6): 3098-3100.
|
24 |
Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B: Condensed Matter, 1988, 37(2): 785-789.
|
25 |
Krack M. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals[J]. Theoretical Chemistry Accounts, 2005, 114(1/2/3): 145-152.
|
26 |
Hartwigsen C, Goedecker S, Hutter J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn[J]. Physical Review B, 1998, 58(7): 3641-3662.
|
27 |
Goedecker S, Teter M, Hutter J. Separable dual-space Gaussian pseudopotentials[J]. Physical Review B, 1996, 54(3): 1703-1710.
|
28 |
Car R. Unified approach for molecular dynamics and density functional theory[J]. Physical Review Letters, 1985, 55(22): 2471-2474.
|
29 |
Dai J X, Han H, Li Q N, et al. First-principle investigation of the structure and vibrational spectra of the local structures in LiF-BeF2 molten salts[J]. Journal of Molecular Liquids, 2016, 213: 17-22.
|
30 |
Kleinman L, Bylander D M. Efficacious form for model pseudopotentials[J]. Physical Review Letters, 1982, 48(20): 1425-1428.
|
31 |
Chadi D J. Special points for brillouin-zone integrations[J]. Physical Review B, 1977, 16(4): 1746-1747.
|
32 |
Nose S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 8(1): 511-519.
|
33 |
Zhang Q R, Han Y, Wu L C. Influence of electrostatic field on the adsorption of phenol on single-walled carbon nanotubes a study by molecular dynamics simulation[J]. Chemical Engineering Journal, 2019, 363: 278-284.
|
34 |
Madden P A, Salanne M, Corradini D. Coordination numbers and physical properties in molten salts and their mixtures[J]. Faraday Discussions, 2016, 190: 471-486.
|
35 |
Pauvert O, Salanne M, Zanghi D, et al. Ion specific effects on the structure of molten AF-ZrF4 systems (A+ = Li+, Na+, and K+ )[J]. The Journal of Physical Chemistry B, 2011, 115(29): 9160-9167.
|
36 |
Rabani E, Gezelter J D, Berne B J. Calculating the hopping rate for self-diffusion on rough potential energy surfaces: cage correlations[J]. The Journal of Chemical Physics, 1997, 107(17): 6867-6876.
|
37 |
阎建民, 罗先金, Krishna R. 非电解质溶液扩散系数的理论研究评述[J]. 化工学报, 2006, 57(10): 2263-2269.
|
|
Yan J M, Luo X J, Krishna R. Review on theoretical calculation of diffusion coefficients in non-electrolytic solutions[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(10): 2263-2269.
|
38 |
Burrell G L, Burgar I M, Gong Q, et al. NMR relaxation and self-diffusion study at high and low magnetic fields of ionic association in protic ionic liquids[J]. Journal of Physical Chemistry B, 2010, 114(35): 11436-11443.
|