化工学报 ›› 2021, Vol. 72 ›› Issue (12): 6016-6029.DOI: 10.11949/0438-1157.20210922
收稿日期:
2021-07-05
修回日期:
2021-10-26
出版日期:
2021-12-05
发布日期:
2021-12-22
通讯作者:
王运东
作者简介:
张姬一哲(1995—),女,博士研究生,基金资助:
Jiyizhe ZHANG(),Yundong WANG(),Weiyang FEI
Received:
2021-07-05
Revised:
2021-10-26
Online:
2021-12-05
Published:
2021-12-22
Contact:
Yundong WANG
摘要:
液液萃取是应用广泛的分离技术,在石油化工、制药提取、金属分离等领域都有重要的应用。萃取塔作为常见的分离设备当前的设计还十分依赖于以往的经验,需要进行大量的实验。文章综述了萃取塔设备的研究现状,总结了对塔内流场、液滴和浓度场的实验测量技术,介绍了基于液滴的模型化方法和多尺度计算流体力学模拟方法,归纳了过程强化的相关研究进展。并对萃取塔未来的研究发展进行了展望,在数字化和可持续的发展背景下,未来在实验方面可以关注实时测量和优化,模型化方面关注于微观界面行为和传质影响的描述,在基于先进的实验和模拟技术基础之上,结合新萃取体系进行萃取设备和内构件的开发,从而实现过程强化,以解决化工过程面临的共同挑战。
中图分类号:
张姬一哲, 王运东, 费维扬. 液液萃取塔研究的若干新进展及展望[J]. 化工学报, 2021, 72(12): 6016-6029.
Jiyizhe ZHANG, Yundong WANG, Weiyang FEI. A states-of-the-art review on research progresses and prospects of liquid-liquid extraction columns[J]. CIESC Journal, 2021, 72(12): 6016-6029.
1 | 李洲, 李以圭. 液-液萃取过程和设备[M]. 北京: 原子能出版社, 1993. |
Li Z, Li Y G. Liquid-Liquid Extraction Process and Equipment [M]. Beijing: Atomic Press, 1993. | |
2 | 李洲, 秦炜. 液-液萃取[M]. 北京: 化学工业出版社, 2013. |
Li Z, Qin W. Liquid-Liquid Extraction[M]. Beijing: Chemical Industry Press, 2013. | |
3 | Baird M H I. Solvent extraction—the challenges of a "mature" technology[J]. The Canadian Journal of Chemical Engineering, 1991, 69(6): 1287-1301. |
4 | Stevens G W, Lo T C, Baird M H I. Extraction, Liquid-Liquid[M]. Kirk Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, 2007. |
5 | Rowley D, Steiner H, Zimmen E. Solvent extraction of penicillin[J]. Journal of the Society of Chemical Industry, 1946, 65(8): 237-240. |
6 | Irish E R, Reas W H. The purex process-a solvent extraction reprocessing method for irradiated uranium[R]. Office of Scientific and Technical Information (OSTI), 1957. |
7 | Mohanty S. Modeling of liquid-liquid extraction column: a review[J]. Reviews in Chemical Engineering, 2000, 16(3): 199-248. |
8 | Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
9 | Godfrey J C, Slater M J. Liquid-Liquid Extraction Equipment[M]. Wiley, 1995. |
10 | 唐晓津. 分散-聚并脉冲筛板萃取塔传质强化与模型化的研究[D]. 北京: 清华大学, 2004. |
Tang X J. Mass transfer enhancement and modelling of coalescence-dispersion pulsed-sieve-plate extraction column[D]. Beijing: Tsinghua University, 2004. | |
11 | Fei W Y, Wang Y D, Wan Y K. Physical modelling and numerical simulation of velocity fields in rotating disc contactor via CFD simulation and LDV measurement[J]. Chemical Engineering Journal, 2000, 78(2/3): 131-139. |
12 | Drumm C, Hlawitschka M W, Bart H J. CFD simulations and particle image velocimetry measurements in an industrial scale rotating disc contactor[J]. AIChE Journal, 2011, 57(1): 10-26. |
13 | Steinmetz T. Tropfenpopulationsbilanzgestütztes auslegungsverfahren zur skalierung einer gerührten miniplant-extraktionskolonne[D]. Kaiserslautern: Technische Universität Kaiserslautern, 2007. |
14 | Kolb P. Hydrodynamik und stoffaustausch in einem gerührten miniplantextraktor der Bauart Kühni[D]. Kaiserslautern: Technische Universität Kaiserslautern, 2004. |
15 | Hlawitschka M W. Computational fluid dynamics aided design of stirred liquid-liquid extraction columns[D]. Kaiserslautern: Technische Universität Kaiserslautern, 2013. |
16 | Tang Q, Zhang J, Wu Y X, et al. An experimental study of immiscible liquid-liquid dispersions in a pump-mixer of mixer-settler[J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 33-45. |
17 | Maaß S, Rojahn J, Hänsch R, et al. Automated drop detection using image analysis for online particle size monitoring in multiphase systems[J]. Computers & Chemical Engineering, 2012, 45: 27-37. |
18 | Hlawitschka M W, Schulz J, Wirz D, et al. Digital extraction column: measurement and modeling techniques[J]. Chemie Ingenieur Technik, 2020, 92(7): 914-925. |
19 | Mickler M, Boecker B, Bart H J. Drop swarm analysis in dispersions with incident-light and transmitted-light illumination[J]. Flow Measurement and Instrumentation, 2013, 30: 81-89. |
20 | Hampel U, Schubert M, Doss A, et al. Recent advances in experimental techniques for flow and mass transfer analyses in thermal separation systems[J]. Chemie Ingenieur Technik, 2020, 92(7): 926-948. |
21 | Zhang J, Berry J D, Mumford K A, et al. Single drop breakage in a reciprocating plate column[J]. Chemical Engineering Journal, 2021, 415: 129049. |
22 | Villwock J, Gebauer F, Kamp J, et al. Systematic analysis of single droplet coalescence[J]. Chemical Engineering & Technology, 2014, 37(7): 1103-1111. |
23 | Gebauer F, Villwock J, Kraume M, et al. Detailed analysis of single drop coalescence—influence of ions on film drainage and coalescence time[J]. Chemical Engineering Research and Design, 2016, 115: 282-291. |
24 | Kamp J, Villwock J, Kraume M. Drop coalescence in technical liquid/liquid applications: a review on experimental techniques and modeling approaches[J]. Reviews in Chemical Engineering, 2017, 33(1): 1-47. |
25 | Bonnet J C, Jeffreys G V. Measurement of concentration profiles in a liquid-liquid extraction column[J]. Journal of Chemical Technology and Biotechnology. Chemical Technology, 1983, 33(4): 176-186. |
26 | Wang Z Z, Chen J, Feng X, et al. Visual dynamical measurement of the solute-induced Marangoni effect of a growing drop with a PLIF method[J]. Chemical Engineering Science, 2021, 233: 116401. |
27 | Heine J S, Bart H J. Mass transfer during droplet formation-a measuring technique study[J]. Chemie Ingenieur Technik, 2017, 89(12): 1635-1641. |
28 | Heine J S, Schulz J M, Junne H, et al. Real-time visualization of internal and external concentration fields in multiphase systems via laser-induced fluorescence and rainbow schlieren deflectometry during and after droplet production [J]. Chemie Ingenieur Technik, 2021, 93(1/2): 180-190. |
29 | Hlawitschka M W, Bart H J. Determination of local velocity, energy dissipation and phase fraction with LIF- and PIV-measurement in a Kühni miniplant extraction column[J]. Chemical Engineering Science, 2012, 69(1): 138-145. |
30 | Drumm C. Coupling of computational fluid dynamics and population balance modelling for liquid-liquid extraction[D]. Kaiserslautern: Technische Universität Kaiserslautern, 2013. |
31 | Bujalski J M, Yang W, Nikolov J, et al. Measurement and CFD simulation of single-phase flow in solvent extraction pulsed column[J]. Chemical Engineering Science, 2006, 61(9): 2930-2938. |
32 | Hocq S, Milot J F, Gourdon C, et al. Electrical conductivity capillary technique: a new method for bivariate drop-size—concentration distribution measurements[J]. Chemical Engineering Science, 1994, 49(4): 481-489. |
33 | Hamad F A, Imberton F, Bruun H H. An optical probe for measurements in liquid-liquid two-phase flow[J]. Measurement Science and Technology, 1997, 8(10): 1122-1132. |
34 | Alopaeus V, Koskinen J, Keskinen K I, et al. Simulation of the population balances for liquid-liquid systems in a nonideal stirred tank. Part 2: Parameter fitting and the use of the multiblock model for dense dispersions[J]. Chemical Engineering Science, 2002, 57(10): 1815-1825. |
35 | Mickler M, Bart H J. Optical multimode online probe: detection and analysis of particle collectives[J]. Chemie Ingenieur Technik, 2013, 85(6): 901-906. |
36 | Wang Y, Smith K H, Mumford K A, et al. Prediction of drop size in a pulsed and non-pulsed disc and doughnut solvent extraction column[J]. Chemical Engineering Research and Design, 2016, 109: 667-674. |
37 | Zhang J Y Z, Wang Y D, Stevens G W, et al. An experimental study on single drop rising in a low interfacial tension liquid-liquid system[J]. Chemical Engineering Research and Design, 2019, 148: 349-360. |
38 | Hohl L, Panckow R P, Schulz J M, et al. Description of disperse multiphase processes: quo vadis? [J]. Chemie Ingenieur Technik, 2018, 90(11): 1709-1726. |
39 | Vishwakarma V, Schleicher, E, Schubert, M, et al. Sensor zur vermessung von strömungsprofilen in großen kolonnen und apparaten: DE102018124501B3[P]. 2020-02-13. |
40 | Vishwakarma V, Schubert M, Hampel U. Assessment of separation efficiency modeling and visualization approaches pertaining to flow and mixing patterns on distillation trays[J]. Chemical Engineering Science, 2018, 185: 182-208. |
41 | Bart H J, Garthe D, Grömping T, et al. Vom einzeltropfen zur extraktionskolonne[J]. Chemie Ingenieur Technik, 2006, 78: 543-547. |
42 | Garthe D. Fluid dynamics and mass transfer of single particles and swarms of particles in extraction columns[D]. München: Technische Universität München, 2006. |
43 | Zhang J, Wang Y D, Stevens G W, et al. A state-of-the-art review on single drop study in liquid-liquid extraction: experiments and simulations[J]. Chinese Journal of Chemical Engineering, 2019, 27(12): 2857-2875. |
44 | Korb C, Bart H J. Solvent extraction in columns in a droplet breakage domain[J]. Hydrometallurgy, 2017, 173: 71-79. |
45 | Cabassud M, Gourdon C, Casamatta G. Single drop break-up in a Kühni column[J]. The Chemical Engineering Journal, 1990, 44(1): 27-41. |
46 | Fang J, Godfrey J C, Mao Z Q, et al. Single liquid-drop breakage probabilities and characteristic velocities in Kühni columns[J]. Chemical Engineering & Technology, 1995, 18(1): 41-48. |
47 | Bahmanyar H, Slater M J. Studies of drop break-up in liquid-liquid systems in a rotating disc contactor. Part I: Conditions of no mass transfer[J]. Chemical Engineering & Technology, 1991, 14(2): 79-89. |
48 | Jareš J, Procházka J. Break-up of droplets in Karr reciprocating plate extraction column[J]. Chemical Engineering Science, 1987, 42(2): 283-292. |
49 | Liu H Q, Jing S, Fang Q, et al. Droplet breakup in a square-sectioned pulsed disc and doughnut column[J]. Industrial & Engineering Chemistry Research, 2016, 55(7): 2242-2251. |
50 | Zhou H, Jing S, Fang Q, et al. Direct measurement of droplet breakage in a pulsed disc and doughnut column[J]. AIChE Journal, 2017, 63(9): 4188-4200. |
51 | Gourdon C, Casamatta G, Angelino H. Single drop experiments with liquid test systems: a way of comparing two types of mechanically agitated extraction columns[J]. The Chemical Engineering Journal, 1991, 46(3): 137-148. |
52 | Simon M, Schmidt S A, Bart H J. The droplet population balance model - estimation of breakage and coalescence[J]. Chemical Engineering & Technology, 2003, 26(7): 745-750. |
53 | Gebauer F. Fundamentals of binary droplet coalescence in liquid-liquid systems[D]. Kaiserslautern: Technische Universität Kaiserslautern, 2018. |
54 | Bart H J, Jildeh H, Attarakih M. Population balances for extraction column simulations—an overview[J]. Solvent Extraction and Ion Exchange, 2020, 38(1): 14-65. |
55 | Kalem M, Buchbender F, Pfennig A. Simulation of hydrodynamics in RDC extraction columns using the simulation tool "ReDrop"[J]. Chemical Engineering Research and Design, 2011, 89(1): 1-9. |
56 | Hlawitschka M W, Attarakih M M, Alzyod S S, et al. CFD based extraction column design—chances and challenges[J]. Chinese Journal of Chemical Engineering, 2016, 24(2): 259-263. |
57 | Nachtigall S, Zedel D, Maaß S, et al. Determination of drop breakage mechanisms by experimental and numerical investigations of single drop breakages[C]// Warszawa: 14th European Conference on Mixing, 2012: 323-328. |
58 | Gebauer F, Hlawitschka M W, Bart H J. CFD aided investigation of single droplet coalescence[J]. Chinese Journal of Chemical Engineering, 2016, 24(2): 249-252. |
59 | Eiswirth R T, Bart H J, Ganguli A A, et al. Experimental and numerical investigation of binary coalescence: liquid bridge building and internal flow fields[J]. Physics of Fluids, 2012, 24(6): 062108. |
60 | Drumm C, Attarakih M, Hlawitschka M W, et al. One-group reduced population balance model for CFD simulation of a pilot-plant extraction column[J]. Industrial & Engineering Chemistry Research, 2010, 49(7): 3442-3451. |
61 | Drumm C, Bart H J. Hydrodynamics in a RDC extractor: single and two-phase PIV measurements and CFD simulations[J]. Chemical Engineering & Technology, 2006, 29(11): 1297-1302. |
62 | Drumm C, Attarakih M M, Bart H J. Coupling of CFD with DPBM for an RDC extractor[J]. Chemical Engineering Science, 2009, 64(4): 721-732. |
63 | Yu X, Li S J, Zhou H, et al. Numerically simulating droplet breakup in droplet swarm using modified level set method with multi-levels[J]. Chemical Engineering Science, 2020, 211:115263. |
64 | Yu X, Zhou H, Jing S, et al. Combining level-set method and population balance model to simulate liquid-liquid two-phase flows in pulsed columns[J]. Chemical Engineering Science, 2020, 226: 115851. |
65 | Attarakih M, Hlawitschka M W, Abu-Khader M, et al. CFD-population balance modeling and simulation of coupled hydrodynamics and mass transfer in liquid extraction columns[J]. Applied Mathematical Modelling, 2015, 39(17): 5105-5120. |
66 | Weber B, Schneider M, Gortz J, et al. Compartment model for liquid-liquid extraction columns[J]. Solvent Extraction and Ion Exchange, 2020, 38(1): 66-87. |
67 | Weber B, Jupke A. Compartment-model for the simulation of the separation performance of stirred liquid-liquid-extraction columns[J]. AIChE Journal, 2020, 66: e16286. |
68 | Modeling Asprion N., simulation, and optimization4.0 for a distillation column[J]. Chemie Ingenieur Technik, 2020, 92(7): 879-889. |
69 | Brockkötter J, Cielanga M, Weber B, et al. Prediction and characterization of flooding in pulsed sieve plate extraction columns using data-driven models[J]. Industrial & Engineering Chemistry Research, 2020, 59(44): 19726-19735. |
70 | Venkatasubramanian V. The promise of artificial intelligence in chemical engineering: Is it here, finally?[J]. AIChE Journal, 2019, 65(2): 466-478. |
71 | 费维扬, 张宝清, 温晓明, 等. 内弯弧形筋片扁环填料: 1019747B[P]. 1992-12-30. |
Fei W Y, Zhang B Q, Wen X M. Mini ring with inner arc[P]: 1019747B[P]. 1992-12-30. | |
72 | 费维扬, 温晓明. 挠性梅花扁环填料: 1038911C[P]. 1998-07-01. |
Fei W Y, Wen X M. Flexible plum flower mini ring[P]: 1038911C[P]. 1998-07-01. | |
73 | 费维扬. 带有加强筋和锯齿形窗口的内弯弧形筋片扁环填料: 2410035Y[P]. 2000-12-13. |
Fei W Y. Mini ring with inner enhanced arc and serrated window[P]: 2410035Y[P]. 2000-12-13. | |
74 | 徐正辔, 曹中林, 费维扬. 润滑油酚精制高效填料抽提塔的应用开发[J]. 炼油设计, 1994, 24(5): 52-54, 6. |
Xu Z P, Cao Z L, Fei W Y. Development and application of lube phenol extraction tower with high efficient packing[J]. Petroleum Refinery Engineering, 1994, 24(5): 52-54, 6. | |
75 | 朱文耀, 张月明, 朱岳中, 等. SMR填料在LPG[J]. 现代化工, 1998, 7: 16-18. |
Zhu W Y, Zhang Y M, Zhu Y Z, et al. Application of SMR for LPG extraction by DEA[J]. Modern Chemical Industry, 1998, 7: 16-18. | |
76 | 朱慎林, 陈德宏, 费维扬. 蜂窝(FG)型规整填料萃取塔的性能研究[J]. 化学工程, 1993, 21(1): 15-21, 40. |
Zhu S L, Chen D H, Fei W Y. Study on performance of honeycomb (FG) structured packing extraction column[J]. Chemical Engineering, 1993, 21(1): 15-21, 40. | |
77 | Yi H. Studies on modeling and scale-up of ceramic hybrid pulsed column[D]. Beijing: Tsinghua University and the University of Melbourne, 2018. |
78 | Li W, Wang Y, Lu H T, et al. Comparison of mass transfer performance of pulsed columns with Tenova kinetics internals and standard disc and doughnut internals[J]. Hydrometallurgy, 2019, 186: 132-142. |
79 | Li H B, Luo G S, Fei W Y, et al. Mass transfer performance in a coalescence-dispersion pulsed sieve plate extraction column[J]. Chemical Engineering Journal, 2000, 78(2/3): 225-229. |
80 | Luo G S, Li H B, Tang X J, et al. Drop breakage in a coalescence-dispersion pulsed-sieve-plate extraction column[J]. Chemical Engineering Journal, 2004, 102(2): 185-191. |
81 | Wang Y D, Fei W Y, Sun J H, et al. Hydrodynamics and mass transfer performance of a modified rotating disc contactor (MRDC)[J]. Chemical Engineering Research and Design, 2002, 80(4): 392-400. |
82 | Tan B R, Lan M L, Li L X, et al. Drop size correlation and population balance model for an agitated-pulsed solvent extraction column[J]. AIChE Journal, 2020, 66(8): e16279. |
83 | Tan B R, Zhang Y L, Wang Y, et al. Study on dispersed-phase axial dispersion in an agitated-pulsed solvent extraction column with a step tracer injection technique[J]. Industrial & Engineering Chemistry Research, 2021, 60(19): 7454-7463. |
84 | Holbach A, Godde J, Mahendrarajah R, et al. Enantioseparation of chiral aromatic acids in process intensified liquid-liquid extraction columns[J]. AIChE Journal, 2015, 61(1): 266-276. |
85 | Heese R, Nies J, Bortz M. Some aspects of combining data and models in process engineering[J]. Chemie Ingenieur Technik, 2020, 92(7): 856-866. |
86 | McBride K, Sanchez Medina E I, Sundmacher K. Hybrid semi-parametric modeling in separation processes: a review[J]. Chemie Ingenieur Technik, 2020, 92(7): 842-855. |
87 | Adinata D. Single-drop based modelling of solvent extraction in high-viscosity systems[D]. Aachen: RWTH Aachen University, 2011. |
88 | Keller A, Hlawitschka M , Bart H J. Einsatz der Reaktivextraktion zum Recycling von Lithium-Ionen-Akkus[J]. Chemie Ingenieur Technik, 2020, 92(9): 1277-1278. |
89 | Schmidt A, Sixt M, Huter M, et al. Systematic and model-assisted process design for the extraction and purification of artemisinin from artemisia annual—part Ⅱ: Model-based design of agitated and packed columns for multistage extraction and scrubbing[J]. Processes, 2018, 6(10): 179. |
[1] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[2] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[3] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[4] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[5] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[6] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[9] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[10] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[11] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[12] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[13] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[14] | 刘道银, 陈柄岐, 张祖扬, 吴琰. 颗粒聚团结构对曳力特性影响的数值模拟[J]. 化工学报, 2023, 74(6): 2351-2362. |
[15] | 邵伟明, 韩文学, 宋伟, 杨勇, 陈灿, 赵东亚. 基于分布式贝叶斯隐马尔可夫回归的动态软测量建模方法[J]. 化工学报, 2023, 74(6): 2495-2502. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||