化工学报 ›› 2021, Vol. 72 ›› Issue (2): 783-798.DOI: 10.11949/0438-1157.20201094
收稿日期:
2020-08-03
修回日期:
2020-09-28
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
付涛涛
作者简介:
刘浪宇(1998—),男,硕士研究生,基金资助:
LIU Langyu(),ZHU Chunying,MA Youguang,FU Taotao()
Received:
2020-08-03
Revised:
2020-09-28
Online:
2021-02-05
Published:
2021-02-05
Contact:
FU Taotao
摘要:
表面活性剂在微流体应用中具有重要作用,常伴随动态界面传递现象。综述了微通道内含表面活性剂的多相流研究进展,剖析了液滴尺寸、液体流变性、压力降与微流体中动态界面张力的关系。总结了表面活性剂作用下的界面传递现象,如气泡及液滴的生成、运动、形变、破裂和聚并动力学的研究进展。综述了微流体中表面活性剂的吸附动力学,对该领域的发展方向进行了展望。
中图分类号:
刘浪宇, 朱春英, 马友光, 付涛涛. 微通道内表面活性剂与界面传递现象研究进展[J]. 化工学报, 2021, 72(2): 783-798.
LIU Langyu, ZHU Chunying, MA Youguang, FU Taotao. Progress on surfactant and interfacial transport phenomena in microchannels[J]. CIESC Journal, 2021, 72(2): 783-798.
1 | van Loo S, Stoukatch S, Kraft M, et al. Droplet formation by squeezing in a microfluidic cross-junction[J]. Microfluidics and Nanofluidics, 2016, 20(10): 146. |
2 | Kim L, Toh Y C, Voldman J, et al. A practical guide to microfluidic perfusion culture of adherent mammalian cells[J]. Lab on a Chip, 2007, 7(6): 681-694. |
3 | Brouzes E, Medkova M, Savenelli N, et al. Droplet microfluidic technology for single-cell high-throughput screening[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(34): 14195-14200. |
4 | Saxena N, Kumar A, Mandal A. Adsorption analysis of natural anionic surfactant for enhanced oil recovery: the role of mineralogy, salinity, alkalinity and nanoparticles[J]. Journal of Petroleum Science and Engineering, 2019, 173: 1264-1283. |
5 | Mao X H, Jiang R, Xiao W, et al. Use of surfactants for the remediation of contaminated soils: a review[J]. Journal of Hazardous Materials, 2015, 285: 419-435. |
6 | Yang Y, Leser M E, Sher A A, et al. Formation and stability of emulsions using a natural small molecule surfactant: Quillaja saponin (Q-Naturale (R))[J]. Food Hydrocolloids, 2013, 30(2): 589-596. |
7 | Anna S L. Droplets and bubbles in microfluidic devices[J]. Annual Review of Fluid Mechanics, 2016, 48: 285-309. |
8 | Baret J C, Kleinschmidt F, El Harrak A, et al. Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis[J]. Langmuir, 2009, 25(11): 6088-6093. |
9 | Ambravaneswaran B, Wilkes E D, Basaran O A. Drop formation from a capillary tube: comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops[J]. Physics of Fluids, 2002, 14(8): 2606-2621. |
10 | Pang Y, Kim H, Liu Z M, et al. A soft microchannel decreases polydispersity of droplet generation[J]. Lab on a Chip, 2014, 14: 4029-4034. |
11 | Luo Z Y, Shang X L, Bai B F. Marangoni effect on the motion of a droplet covered with insoluble surfactant in a square microchannel[J]. Physics of Fluids, 2018, 30(7): 077101. |
12 | Glawdel T, Ren C L. Droplet formation in microfluidic T-junction generators operating in the transitional regime(III): Dynamic surfactant effects[J]. Physical Review E, 2012, 86(2): 026308. |
13 | Tostado C P, Xu J H, Du A W, et al. Experimental study on dynamic interfacial tension with mixture of SDS-PEG as surfactants in a coflowing microfluidic device[J]. Langmuir, 2012, 28(6): 3120-3128. |
14 | Steegmans M L J, Warmerdam A, Schroёn KG P H, et al. Dynamic interfacial tension measurements with microfluidic Y-junctions[J]. Langmuir, 2009, 25(17): 9751-9758. |
15 | Wang X Y, Riaud A, Wang K, et al. Pressure drop-based determination of dynamic interfacial tension of droplet generation process in T-junction microchannel[J]. Microfluidics and Nanofluidics, 2015, 18(3): 503-512. |
16 | Xu J H, Li S W, Lan W J, et al. Microfluidic approach for rapid interfacial tension measurement[J]. Langmuir, 2008, 24(19): 11287-11292. |
17 | Nie Z H, Xu S Q, Seo M, et al. Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors[J]. Journal of the American Chemical Society, 2005, 127(22): 8058-8063. |
18 | Cascon-Pereira R, Martin J D M, Icart I B. An exploration of the meanings of innovation held by students, teachers and SMEs in Spain[J]. Journal of Vocational Education and Training, 2019, 71(4): 623-644. |
19 | Riaud A, Tostado C P, Wang K, et al. A facile pressure drop measurement system and its applications to gas-liquid microflows[J]. Microfluidics and Nanofluidics, 2013, 15(5): 715-724. |
20 | Riaud A, Zhang H, Wang X Y, et al. Numerical study of surfactant dynamics during emulsification in a T-junction microchannel[J]. Langmuir, 2018, 34(17): 4980-4990. |
21 | Thorsen T, Roberts R W, Arnold F H, et al. Dynamic pattern formation in a vesicle-generating microfluidic device[J]. Physical Review Letters, 2001, 86(18): 4163-4166. |
22 | Wang K, Lu Y C, Xu J H, et al. Determination of dynamic interfacial tension and its effect on droplet formation in the T-shaped microdispersion process[J]. Langmuir, 2009, 25(4): 2153-2158. |
23 | Xu J H, Li S W, Tan J, et al. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping[J]. Microfluidics and Nanofluidics, 2008, 5(6): 711-717. |
24 | Xu J H, Li S W, Tan J, et al. Preparation of highly monodisperse droplet in a T-junction microfluidic device[J]. AIChE Journal, 2006, 52(9): 3005-3010. |
25 | Cabral J T, Hudson S D. Microfluidic approach for rapid multicomponent interfacial tensiometry[J]. Lab on a Chip, 2006, 6(3): 427-436. |
26 | Glawdel T, Elbuken C, Ren C L. Droplet formation in microfluidic T-junction generators operating in the transitional regime(I): Experimental observations[J]. Physical Review E, 2012, 85(1/2): 016322. |
27 | Horozov T, Arnaudov L. A novel fast technique for measuring dynamic surface and interfacial tension of surfactant solutions at constant interfacial area[J]. Journal of Colloid and Interface Science, 1999, 219(1): 99-109. |
28 | Buzzacchi M, Schmiedel P, von Rybinski W. Dynamic surface tension of surfactant systems and its relation to foam formation and liquid film drainage on solid surfaces[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2006, 273(1/2/3): 47-54. |
29 | Miller R, Aksenenko E V, Fainerman V B. Dynamic interfacial tension of surfactant solutions[J]. Advances in Colloid and Interface Science, 2017, 247: 115-129. |
30 | Ponce-Torres A, Montanero J M, Herrada M A, et al. Influence of the surface viscosity on the breakup of a surfactant-laden drop[J]. Physical Review Letters, 2017, 118(2): 024501. |
31 | Baret J C. Surfactants in droplet-based microfluidics[J]. Lab on a Chip, 2012, 12(3): 422-433. |
32 | Sternling C V, Scriven L E. Interfacial turbulence : hydrodynamic instability and the Marangoni effect[J]. AIChE Journal, 1959, 5(4): 514-523. |
33 | Takagi S, Matsumoto Y. Surfactant effects on bubble motion and bubbly flows[J]. Annual Review of Fluid Mechanics, 2011, 43(1): 615-636. |
34 | Still T, Yunker P J, Yodh A G. Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops[J]. Langmuir, 2012, 28(11): 4984-4988. |
35 | Almatroushi E, Borhan A. Surfactant effect on the buoyancy-driven motion of bubbles and drops in a tube[J]. Transport Phenomena in Microgravity, 2004, 1027: 330-341. |
36 | Jafari S M, Assadpoor E, He Y H, et al. Re-coalescence of emulsion droplets during high-energy emulsification[J]. Food Hydrocolloids, 2008, 22(7): 1191-1202. |
37 | Xu J J, Shi W D, Lai M C. A level-set method for two-phase flows with soluble surfactant[J]. Journal of Computational Physics, 2018, 353: 336-355. |
38 | Bretherton F P. The motion of long bubbles in tubes[J]. Journal of Fluid Mechanics, 2006, 10(2): 166-188. |
39 | Park C W. Influence of soluble surfactants on the motion of a finite bubble in a capillary tube[J]. Physics of Fluids A Fluid Dynamics, 1992, 4(11): 2335-2347. |
40 | Luo Z Y, Shang X L, Bai B F. Effect of soluble surfactant on the motion of a confined droplet in a square microchannel[J]. Physics of Fluids, 2019, 31(11): 117104. |
41 | Kovalchuk N M, Nowak E, Simmons M J H. Effect of soluble surfactants on the kinetics of thinning of liquid bridges during drops formation and on size of satellite droplets[J]. Langmuir, 2016, 32(20): 5069-5077. |
42 | Saint Vincent M R D, Petit J, Aytouna M, et al. Dynamic interfacial tension effects in the rupture of liquid necks[J]. Journal of Fluid Mechanics, 2012, 692: 499-510. |
43 | Liascukiene I, Amselem G, Gunes D Z, et al. Capture of colloidal particles by a moving microfluidic bubble[J]. Soft Matter, 2018, 14(6): 992-1000. |
44 | Brosseau Q, Vrignon J, Baret J-C. Microfluidic dynamic interfacial tensiometry (μDIT)[J]. Soft Matter, 2014, 10(17): 3066-3076. |
45 | Fuerstman M J, Lai A, Thurlow M E, et al. The pressure drop along rectangular microchannels containing bubbles[J]. Lab on a Chip, 2007, 7(11): 1479-1489. |
46 | Taylor G I. The formation of emulsions in definable fields of flow[J]. Proceedings of the Royal Society of London, 1934, 146(858): 501-523. |
47 | Vlahovska P M, Blawzdziewicz J, Loewenberg M. Small-deformation theory for a surfactant-covered drop in linear flows[J]. Journal of Fluid Mechanics, 2009, 624: 293-337. |
48 | Jakiela S, Makulska S, Korczyk P M, et al. Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities[J]. Lab on a Chip, 2011, 11(21): 3603-3608. |
49 | Drumright-Clarke M A, Renardy Y. The effect of insoluble surfactant at dilute concentration on drop breakup under shear with inertia[J]. Physics of Fluids, 2004, 16(1): 14-21. |
50 | Mandal S, Das S, Chakraborty S. Effect of Marangoni stress on the bulk rheology of a dilute emulsion of surfactant-laden deformable droplets in linear flows[J]. Physical Review Fluids, 2017, 2(11): 113604. |
51 | Zhao H, Zhang W B, Xu J L, et al. Influence of surfactant on the drop bag breakup in a continuous air jet stream[J]. Physics of Fluids, 2016, 28(5): 054102. |
52 | Aggarwal N, Sarkar K. Effects of matrix viscoelasticity on viscous and viscoelastic drop deformation in a shear flow[J]. Journal of Fluid Mechanics, 2008, 601: 63-84. |
53 | Panigrahi D P, Das S, Chakraborty S. Deformation of a surfactant-laden viscoelastic droplet in a uniaxial extensional flow[J]. Physics of Fluids, 2018, 30(12): 122108. |
54 | Tan J, Li S W, Wang K, et al. Gas-liquid flow in T-junction microfluidic devices with a new perpendicular rupturing flow route[J]. Chemical Engineering Journal, 2009, 146(3): 428-433. |
55 | Zhu P, Wang L. Passive and active droplet generation with microfluidics: a review[J]. Lab on a Chip, 2016, 17(1): 34-75. |
56 | 刘赵淼, 杨洋, 杜宇, 等. 微流控液滴技术及其应用的研究进展[J]. 分析化学, 2017, 45(2): 282-296. |
Liu Z M, Yang Y, Du Y, et al. Advances in droplet-based microfluidics technology and its application [J]. Chinese Journal of Analytical Chemistry, 2017, 45(2): 282-296. | |
57 | 陈晓东, 胡国庆. 微流控器件中的多相流动[J]. 力学进展, 2015, 45(1): 55-110. |
Chen X D, Hu G Q. Multiphase flow in microfluidic devices [J]. Advances in Mechanics, 2015, 45(1): 55-110. | |
58 | Abdulmouti H. Bubbly two-phase flow(Ⅰ): Characteristics, structures, behaviors and flow patterns[J]. American Journal of Fluid Dynamics, 2014, 4(4): 194-240. |
59 | Bai L, Fu Y H, Zhao S F, et al. Droplet formation in a microfluidic T-junction involving highly viscous fluid systems[J]. Chemical Engineering Science, 2016, 145: 141-148. |
60 | Darekar M, Singh K K, Mukhopadhyay S, et al. Liquid-liquid two-phase flow patterns in Y-junction microchannels[J]. Industrial & Engineering Chemistry Research, 2017, 56(42): 12215-12226. |
61 | Lioumbas J S, Mouza A A, Paras S V. Effect of surfactant additives on co-current gas-liquid downflow[J]. Chemical Engineering Science, 2006, 61(14): 4605-4616. |
62 | Duangprasert T, Sirivat A, Siemanond K, et al. Vertical two-phase flow regimes and pressure gradients under the influence of SDS surfactant[J]. Experimental Thermal and Fluid Science, 2008, 32(3): 808-817. |
63 | Du J P, Ibaseta N, Guichardon P. Generation of an O/W emulsion in a flow-focusing microchip: importance of wetting conditions and of dynamic interfacial tension[J]. Chemical Engineering Research and Design, 2020, 159: 615-627. |
64 | Shao N, Gavriilidis A, Angeli P. Flow regimes for adiabatic gas-liquid flow in microchannels[J]. Chemical Engineering Science, 2009, 64(11): 2749-2761. |
65 | Kovalchuk N M, Roumpea E, Nowak E, et al. Effect of surfactant on emulsification in microchannels[J]. Chemical Engineering Science, 2018, 176: 139-152. |
66 | Dreyfus R, Tabeling P, Willaime H. Ordered and disordered patterns in two-phase flows in microchannels[J]. Physical Review Letters, 2003, 90(14): 144505. |
67 | Zhang C, Weldetsadik N T, Hayat Z, et al. The effect of liquid viscosity on bubble formation dynamics in a flow-focusing device[J]. International Journal of Multiphase Flow, 2019, 117: 206-211. |
68 | van Hoeve W, Dollet B, Versluis M, et al. Microbubble formation and pinch-off scaling exponent in flow-focusing devices[J]. Physics of Fluids, 2011, 23(9): 092001. |
69 | Li X C, Huang Y Y, Chen X Q, et al. Breakup dynamics of gas-liquid interface during Taylor bubble formation in a microchannel flow-focusing device[J]. Experimental Thermal and Fluid Science, 2020, 113: 110043. |
70 | Thoroddsen S T, Etoh T G, Takehara K. Experiments on bubble pinch-off[J]. Physics of Fluids, 2007, 19(4): 042101. |
71 | Dollet B, van Hoeve W, Raven J P, et al. Role of the channel geometry on the bubble pinch-off in flow-focusing devices[J]. Physical Review Letters, 2008, 100(3): 034504. |
72 | Roumpea E, Kovalchuk N M, Chinaud M, et al. Experimental studies on droplet formation in a flow-focusing microchannel in the presence of surfactants[J]. Chemical Engineering Science, 2019, 195: 507-518. |
73 | Roche M, Aytouna M, Bonn D, et al. Effect of surface tension variations on the pinch-off behavior of small fluid drops in the presence of surfactants[J]. Physical Review Letters, 2009, 103(26): 264501. |
74 | Yu W, Liu X D, Zhao Y J, et al. Droplet generation hydrodynamics in the microfluidic cross-junction with different junction angles[J]. Chemical Engineering Science, 2019, 203: 259-284. |
75 | Ata S. Coalescence of bubbles covered by particles[J]. Langmuir, 2008, 24(12): 6085-6091. |
76 | Bremond N, Thiam A R, Bibette J. Decompressing emulsion droplets favors coalescence[J]. Physical Review Letters, 2008, 100(2): 024501. |
77 | Chan D Y C, Klaseboer E, Manica R. Film drainage and coalescence between deformable drops and bubbles[J]. Soft Matter, 2011, 7(6): 2235-2264. |
78 | Levache B, Bartolo D. Revisiting the Saffman-Taylor experiment: imbibition patterns and liquid-entrainment transitions[J]. Physical Review Letters, 2014, 113(4): 044501. |
79 | Eggers J. Nonlinear dynamics and breakup of free-surface flows[J]. Reviews of Modern Physics, 1997, 69(3): 865-930. |
80 | Li S Q, Liu M C, Hanaor D, et al. Dynamics of viscous entrapped saturated zones in partially wetted porous media[J]. Transport in Porous Media, 2018, 125(2): 193-210. |
81 | Cubaud T, Mason T G. Capillary threads and viscous droplets in square microchannels[J]. Physics of Fluids, 2008, 20(5): 053302. |
82 | Hashimoto M, Garstecki P, Stone H A, et al. Interfacial instabilities in a microfluidic Hele-Shaw cell[J]. Soft Matter, 2008, 4(7): 1403-1413. |
83 | Taylor G I. Disintegration of water drops in an electric field[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1964, 280(1382): 383-397. |
84 | Fernandez J M, Homsy G M. Chemical reaction-driven tip-streaming phenomena in a pendant drop[J]. Physics of Fluids, 2004, 16(7): 2548-2555. |
85 | Krechetnikov R, Homsy G M. On physical mechanisms in chemical reaction-driven tip-streaming[J]. Physics of Fluids, 2004, 16(7): 2556-2566. |
86 | Suryo R, Basaran O A. Tip streaming from a liquid drop forming from a tube in a co-flowing outer fluid[J]. Physics of Fluids, 2006, 18(8): 082102. |
87 | Castro-Hernández E, Campo-Cortés F, Gordillo J M. Slender-body theory for the generation of micrometre-sized emulsions through tip streaming[J]. Journal of Fluid Mechanics, 2012, 698: 423-445. |
88 | Moyle T M, Walker L M, Anna S L. Predicting conditions for microscale surfactant mediated tipstreaming[J]. Physics of Fluids, 2012, 24(8): 082110. |
89 | Moyle T M, Walker L M, Anna S L. Controlling thread formation during tipstreaming through an active feedback control loop[J]. Lab on a Chip, 2013, 13(23): 4534-4541. |
90 | Anna S L, Mayer H C. Microscale tipstreaming in a microfluidic flow focusing device[J]. Physics of Fluids, 2006, 18(12): 121512. |
91 | Lee W, Walker L M, Anna S L. Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing[J]. Physics of Fluids, 2009, 21(3): 032103. |
92 | Ward T, Faivre M, Stone H A. Drop production and tip-streaming phenomenon in a microfluidic flow-focusing device via an interfacial chemical reaction[J]. Langmuir, 2010, 26(12): 9233-9239. |
93 | Vega E J, Acero A J, Montanero J M, et al. Production of microbubbles from axisymmetric flow focusing in the jetting regime for moderate Reynolds numbers[J]. Physical Review E, 2014, 89(6): 063012. |
94 | Castro-Hernandez E, van Hoeve W, Lohse D, et al. Microbubble generation in a co-flow device operated in a new regime[J]. Lab on a Chip, 2011, 11(12): 2023-2029. |
95 | Fu T T, Ma Y G, Funfschilling D, et al. Bubble formation and breakup mechanism in a microfluidic flow-focusing device[J]. Chemical Engineering Science, 2009, 64(10): 2392-2400. |
96 | Riechers B, Maes F, Akoury E, et al. Surfactant adsorption kinetics in microfluidics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(41): 11465-11470. |
97 | Kawale D, van Nimwegen A T, Portela L M, et al. The relation between the dynamic surface tension and the foaming behaviour in a sparger setup[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2015, 481: 328-336. |
98 | Kanokkarn P, Shiina T, Santikunaporn M, et al. Equilibrium and dynamic surface tension in relation to diffusivity and foaming properties: effects of surfactant type and structure[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2017, 524: 135-142. |
99 | Ampatzidis C D, Varka E M A, Karapantsios T D. Interfacial activity of amino acid-based glycerol ether surfactants and their performance in stabilizing O/W cosmetic emulsions[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2014, 460: 176-183. |
100 | Ward A, Tordai L. Time-dependence of boundary tensions of solutions (Ⅰ): The role of diffusion in time-effects[J]. J.Chem. Phys., 1946, 14: 453- 461. |
101 | Baret J F. Theoretical model for an interface allowing a kinetic study of adsorption[J]. Journal of Colloid and Interface Science, 1969, 30(1): 1-12. |
102 | Yang M W, Wei H H, Lin S Y. A theoretical study on surfactant adsorption kinetics: effect of bubble shape on dynamic surface tension[J]. Langmuir, 2007, 23(25): 12606-12616. |
103 | Colegate D M, Bain C D. Adsorption kinetics in micellar solutions of nonionic surfactants[J]. Physical Review Letters, 2005, 95(19): 198302. |
104 | Zhmud B V, Tiberg F, Kizling J. Dynamic surface tension in concentrated solutions of CnEm surfactants: a comparison between the theory and experiment[J]. Langmuir, 2000, 16(6): 2557-2565. |
[1] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[2] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[3] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[4] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[5] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[6] | 郑志航, 马郡男, 闫子涵, 卢春喜. 提升管射流影响区内压力脉动特性研究[J]. 化工学报, 2023, 74(6): 2335-2350. |
[7] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[8] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
[9] | 李新亚, 邢雷, 蒋明虎, 赵立新. 倒锥注气强化井下油水分离水力旋流器性能研究[J]. 化工学报, 2023, 74(3): 1134-1144. |
[10] | 颜少航, 赖天伟, 王彦武, 侯予, 陈双涛. 微间隙内R134a空化可视化实验研究[J]. 化工学报, 2023, 74(3): 1054-1061. |
[11] | 章承浩, 罗京, 张吉松. 微反应器内基于氮氧自由基催化剂连续氧气/空气氧化反应的研究进展[J]. 化工学报, 2023, 74(2): 511-524. |
[12] | 熊昊, 梁潇予, 张晨曦, 白浩隆, 范晓宇, 魏飞. 重质油直接制化工品:多级逆流下行催化裂解技术[J]. 化工学报, 2023, 74(1): 86-104. |
[13] | 廖艺, 牛亚宾, 潘艳秋, 俞路. 复配表面活性剂对油水界面行为和性质影响的模拟研究[J]. 化工学报, 2022, 73(9): 4003-4014. |
[14] | 管小平, 杨宁. 基于介尺度稳定性条件的多相流曳力与群体平衡模型[J]. 化工学报, 2022, 73(6): 2427-2437. |
[15] | 刘梦溪, 范怡平, 闫子涵, 姚秀颖, 卢春喜. 提升管进料区内气体射流流动行为的调控及工业应用[J]. 化工学报, 2022, 73(6): 2496-2513. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||