化工学报 ›› 2021, Vol. 72 ›› Issue (4): 2283-2292.DOI: 10.11949/0438-1157.20201163
那天成(),李祥村(),郭娇,刘思远,杨宏杰,姜贺龙,姜福林,贺高红()
收稿日期:
2020-08-17
修回日期:
2020-11-03
出版日期:
2021-04-05
发布日期:
2021-04-05
通讯作者:
李祥村,贺高红
作者简介:
那天成(1988—),男,博士研究生,基金资助:
NA Tiancheng(),LI Xiangcun(),GUO Jiao,LIU Siyuan,YANG Hongjie,JIANG Helong,JIANG Fulin,HE Gaohong()
Received:
2020-08-17
Revised:
2020-11-03
Online:
2021-04-05
Published:
2021-04-05
Contact:
LI Xiangcun,HE Gaohong
摘要:
利用定向冷冻-碳化法制备了Fe2C、氮共掺杂的碳膜(Fe2C/N-C)作为一体化电极用于锂硫电池。由于其兼具规则的导电网络和连通的离子扩散通道,可有效缓解活性物质硫及放电终端产物导电性差的问题,且孔道结构亦可有效缓冲充放电过程活性物质的体积膨胀效应。该膜结构有利于电子传递和锂离子扩散,掺杂的Fe2C纳米颗粒对多硫化锂具有较强的吸附作用以及向放电终端产物转化的催化作用,有效抑制了多硫化物的“穿梭效应”,提高硫利用率,显著提升电池的综合性能和循环稳定性。Fe2C/N-C电极在载流量1.1 mg·cm-2、1.0 C电流密度下循环100圈后得到833.0 mA·h·g-1的比容量、99.3%的库仑效率、每圈容量衰减率低至0.02%,在较高载硫量3.8 mg·cm-2时,0.2 C下循环100圈仍能取得714.3 mA·h·g-1的比容量。
中图分类号:
那天成, 李祥村, 郭娇, 刘思远, 杨宏杰, 姜贺龙, 姜福林, 贺高红. Fe2C和氮共掺杂的具有有序孔道结构碳膜用于锂硫电池正极[J]. 化工学报, 2021, 72(4): 2283-2292.
NA Tiancheng, LI Xiangcun, GUO Jiao, LIU Siyuan, YANG Hongjie, JIANG Helong, JIANG Fulin, HE Gaohong. Fe2C hybrid nitrogen-doped carbon membranes with regular pore structure for integrated Li-S battery cathodes[J]. CIESC Journal, 2021, 72(4): 2283-2292.
图1 定向冷冻制膜流程和膜结构示意图及Fe3O4/PAN定向多孔复合膜、预氧化膜、碳化膜片实物图
Fig.1 Schematic of the process of the membrane prepared by directional freezing method and the structure of membrane, the photographs of the Fe3O4/PAN directional porous composite membrane, and the membranes after pre-oxidation and carbonization
图2 PAN膜、Fe3O4/PAN复合膜、Fe3O4微球及Fe2C/N-C、N-C膜的XRD谱图
Fig.2 XRD patterns of the PAN membrane, Fe3O4/PAN composite membrane, Fe3O4 microspheres and Fe2C/N-C, N-C membranes
图8 Fe2C/N-C/S和N-C/S电极在不同电流密度、不同载硫量下的循环性能
Fig.8 Cycling performance of Fe2C/N-C/S and N-C/S membrane cathodes at different current densities with different sulfur loadings
图10 Fe2C/N-C/S和N-C/S电极电池的交流阻抗曲线和拟合电路
Fig.10 EIS curves and the fitting curves of the cells with Fe2C/N-C/S and N-C/S membrane cathodes with the equivalent fitting circuit inside
1 | Zhou G M, Li L, Ma C Q, et al. A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries[J]. Nano Energy, 2015, 11: 356-365. |
2 | Peng H J, Huang J Q, Cheng X B, et al. Lithium-sulfur batteries: review on high-loading and high-energy lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7(24): 1770141. |
3 | Pope M A, Aksay I A. Structural design of cathodes for Li-S batteries[J]. Advanced Energy Materials, 2015, 5(16): 1500124. |
4 | Liu X, Huang J Q, Zhang Q, et al. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J]. Advanced Materials, 2017, 29(20): 1601759. |
5 | Qiu Y C, Li W F, Li G Z, et al. Polyaniline-modified cetyltrimethylammonium bromide-graphene oxide-sulfur nanocomposites with enhanced performance for lithium-sulfur batteries[J]. Nano Research, 2014, 7(9): 1355-1363. |
6 | Peng H J, Xu W T, Zhu L, et al. Lithium-sulfur batteries: 3D carbonaceous current collectors: the origin of enhanced cycling stability for high-sulfur-loading lithium-sulfur batteries[J]. Advanced Functional Materials, 2016, 26(35): 6321-6358. |
7 | Singhal R, Chung S H, Manthiram A, et al. A free-standing carbon nanofiber interlayer for high-performance lithium–sulfur batteries[J]. Journal of Materials Chemistry A, 2015, 3(8): 4530-4538. |
8 | Luo Y Q, Guo L L, Xiao M, et al. Strategies for inhibiting anode dendrite growth in lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2020, 8(9): 4629-4646. |
9 | Liu H, Cheng X B, Xu R, et al. Plating/stripping behavior of actual lithium metal anode[J]. Advanced Energy Materials, 2019, 9(44): 1902254. |
10 | Yu M P, Ma J S, Xie M, et al. Freestanding and sandwich-structured electrode material with high areal mass loading for long-life lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7(11): 1602347. |
11 | Zeng L C, Yao Y, Shi J N, et al. A flexible S1-xSex@porous carbon nanofibers (x≤0.1) thin film with high performance for Li-S batteries and room-temperature Na-S batteries[J]. Energy Storage Materials, 2016, 5: 50-57. |
12 | Zheng G Y, Yang Y, Cha J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries[J]. Nano Letters, 2011, 11(10): 4462-4467. |
13 | Wang H L, Yang Y, Liang Y Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability[J]. Nano Letters, 2011, 11(7): 2644-2647. |
14 | 杨蓉, 李兰, 王黎晴, 等. 微波法制备还原氧化石墨烯及其在锂硫电池中的应用[J]. 化工学报, 2017, 68(11): 4333-4340. |
Yang R, Li L, Wang L Q, et al. Preparation of reduced graphene oxide by microwave method and its application in lithium-sulfur batteries[J]. CIESC Journal, 2017, 68(11): 4333-4340. | |
15 | Tang C, Li B Q, Zhang Q, et al. CaO-templated growth of hierarchical porous graphene for high-power lithium-sulfur battery applications[J]. Advanced Functional Materials, 2016, 26(4): 577-585. |
16 | Xu F, Xu J, Xu H J, et al. Fabrication of novel powdery carbon aerogels with high surface areas for superior energy storage[J]. Energy Storage Materials, 2017, 7: 8-16. |
17 | Roberts A D, Wang S X, Li X, et al. Hierarchical porous nitrogen-rich carbon monoliths via ice-templating: high capacity and high-rate performance as lithium-ion battery anode materials[J]. J. Mater. Chem. A, 2014, 2(42): 17787-17796. |
18 | Lee J T, Zhao Y Y, Thieme S, et al. Sulfur-infiltrated micro- and mesoporous silicon carbide-derived carbon cathode for high-performance lithium sulfur batteries[J]. Advanced Materials, 2013, 25(33): 4573-4579. |
19 | Yuan C Z, Zhu S Q, Cao H, et al. Hierarchical sulfur-impregnated hydrogenated TiO2 mesoporous spheres comprising anatase nanosheets with highly exposed (001) facets for advanced Li-S batteries[J]. Nanotechnology, 2016, 27(4): 045403. |
20 | Liang X, Kwok C Y, Lodi-Marzano F, et al. Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: the “goldilocks” principle[J]. Advanced Energy Materials, 2016, 6(6): 1501636. |
21 | Yuan Z, Peng H J, Hou T Z, et al. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Letters, 2016, 16(1): 519-527. |
22 | Zhang S S, Tran D T. Pyrite FeS2as an efficient adsorbent of lithium polysulphide for improved lithium–sulphur batteries[J]. Journal of Materials Chemistry A, 2016, 4(12): 4371-4374. |
23 | Li X L, Chu L B, Wang Y Y, et al. Anchoring function for polysulfide ions of ultrasmall SnS2 in hollow carbon nanospheres for high performance lithium-sulfur batteries[J]. Materials Science and Engineering: B, 2016, 205: 46-54. |
24 | Liu Y, Li X C, Liu Y, et al. Promoting opposite diffusion and efficient conversion of polysulfides in “Trap” FexC-doped asymmetric porous membranes as integrated electrodes[J]. Chemical Engineering Journal, 2020, 382: 122858. |
25 | Zhou F, Li Z, Luo X, et al. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S batteries[J]. Nano Letters, 2018, 18(2): 1035-1043. |
26 | Wang Y Z, Li M, Xu L C, et al. Polar and conductive iron carbide@N-doped porous carbon nanosheets as a sulfur host for high performance lithium sulfur batteries[J]. Chemical Engineering Journal, 2019, 358: 962-968. |
27 | Zhang Y G, Li G R, Wang J Y, et al. Hierarchical defective Fe3-xC@C hollow microsphere enables fast and long-lasting lithium-sulfur batteries[J]. Advanced Functional Materials, 2020, 30(22): 2001165. |
28 | Gao B, Li X X, Ding K, et al. Recent progress in nanostructured transition metal nitrides for advanced electrochemical energy storage[J]. Journal of Materials Chemistry A, 2019, 7(1): 14-37. |
29 | Huang S Z, Lim Y V, Zhang X M, et al. Regulating the polysulfide redox conversion by iron phosphide nanocrystals for high-rate and ultrastable lithium-sulfur battery[J]. Nano Energy, 2018, 51: 340-348. |
30 | Kou W, Chen G H, Liu Y, et al. Patterned macroporous Fe3C/C membrane-induced high ionic conductivity for integrated Li–sulfur battery cathodes[J]. Journal of Materials Chemistry A, 2019, 7(36): 20614-20623. |
31 | Zhang T, Zhang X F, Yan X J, et al. Synthesis of Fe3O4@ZIF-8 magnetic core-shell microspheres and their potential application in a capillary microreactor[J]. Chemical Engineering Journal, 2013, 228: 398-404. |
32 | Pang Q, Tang J T, Huang H, et al. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries[J]. Advanced Materials, 2015, 27(39): 6021-6028. |
33 | Pang Q, Kundu D, Cuisinier M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nature Communications, 2014, 5: 4759. |
34 | Diao Y, Xie K, Xiong S Z, et al. Shuttle phenomenon — the irreversible oxidation mechanism of sulfur active material in Li-S battery[J]. Journal of Power Sources, 2013, 235: 181-186. |
35 | Hu C, Chen H, Shen Y, et al. In situ wrapping of the cathode material in lithium-sulfur batteries[J]. Nature Communications, 2017, 8(1): 479. |
36 | Liang X, Hart C, Pang Q, et al. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nature Communications, 2015, 6: 5682. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[5] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[6] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[9] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[10] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[11] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[12] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[13] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[14] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[15] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 121
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 487
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||