化工学报 ›› 2021, Vol. 72 ›› Issue (4): 2139-2147.DOI: 10.11949/0438-1157.20201172
杜娟1,2(),龚志强1,黄曹兴3,梁辰1,2(
),姚双全1,2,刘杨1,2
收稿日期:
2020-08-17
修回日期:
2020-08-29
出版日期:
2021-04-05
发布日期:
2021-04-05
通讯作者:
梁辰
作者简介:
杜娟(1994—),女,硕士研究生,基金资助:
DU Juan1,2(),GONG Zhiqiang1,HUANG Caoxing3,LIANG Chen1,2(
),YAO Shuangquan1,2,LIU Yang1,2
Received:
2020-08-17
Revised:
2020-08-29
Online:
2021-04-05
Published:
2021-04-05
Contact:
LIANG Chen
摘要:
针对碱法提取半纤维素中木质素含量高、纯化难的问题,通过疏水树脂吸附-超滤协同处理,探讨纯化分离方式的影响。利用离子色谱(IC)、紫外分光光度计(UV)、凝胶渗透色谱(GPC)和热重量分析(TGA),对半纤维素的化学组分、分子量、热稳定性等特性进行了分析。结果表明,树脂吸附-膜超滤处理能有效脱除木质素,获得较高分子量的半纤维素,分子主链结构没有发现明显变化,热稳定性略有提高。经树脂吸附后的半纤维素侧链单元有较为明显的变化,分子量较小的半纤维素带有更多侧链木质素单元,通过苯基糖苷键(PhGlc)与碳水化合物相连,可通过树脂吸附-超滤协同处理分离出来,从而达到分离不同侧链结构的半纤维素。
中图分类号:
杜娟, 龚志强, 黄曹兴, 梁辰, 姚双全, 刘杨. 树脂吸附-超滤协同分离甘蔗渣碱法半纤维素[J]. 化工学报, 2021, 72(4): 2139-2147.
DU Juan, GONG Zhiqiang, HUANG Caoxing, LIANG Chen, YAO Shuangquan, LIU Yang. Resin adsorption - ultrafiltration synergistic separation of alkaline extracted hemicellulose from bagasse[J]. CIESC Journal, 2021, 72(4): 2139-2147.
糖组分 | Hu2/% | Hu3/% | Hu4/% | Hu5/% | Hu6/% |
---|---|---|---|---|---|
木糖 | 62.81 | 56.14 | 53.16 | 50.25 | 39.56 |
阿拉伯糖 | 14.36 | 14.78 | 14.96 | 11.98 | 11.58 |
葡萄糖 | 3.74 | 2.76 | 3.03 | 3.14 | 2.44 |
半乳糖 | 3.81 | 4.17 | 3.38 | 3.32 | 3.39 |
甘露糖 | 2.01 | 1.43 | 1.58 | 2.14 | 1.29 |
木质素 | 1.51 | 2.39 | 3.77 | 5.82 | 17.06 |
糠醛 | 4.77 | 4.32 | 4.12 | 3.99 | 2.94 |
甲酸 | 10.05 | 12.58 | 10.05 | 9.27 | 8.68 |
乙酸 | 3.10 | 3.44 | 3.91 | 2.75 | 3.14 |
表1 超滤后半纤维素组分
Table 1 Hemicellulose components after ultrafiltration
糖组分 | Hu2/% | Hu3/% | Hu4/% | Hu5/% | Hu6/% |
---|---|---|---|---|---|
木糖 | 62.81 | 56.14 | 53.16 | 50.25 | 39.56 |
阿拉伯糖 | 14.36 | 14.78 | 14.96 | 11.98 | 11.58 |
葡萄糖 | 3.74 | 2.76 | 3.03 | 3.14 | 2.44 |
半乳糖 | 3.81 | 4.17 | 3.38 | 3.32 | 3.39 |
甘露糖 | 2.01 | 1.43 | 1.58 | 2.14 | 1.29 |
木质素 | 1.51 | 2.39 | 3.77 | 5.82 | 17.06 |
糠醛 | 4.77 | 4.32 | 4.12 | 3.99 | 2.94 |
甲酸 | 10.05 | 12.58 | 10.05 | 9.27 | 8.68 |
乙酸 | 3.10 | 3.44 | 3.91 | 2.75 | 3.14 |
糖组分 | Hau2/% | Hau3/% | Hau4/% | Hau5/% | Hau6/% |
---|---|---|---|---|---|
木糖 | 56.97 | 56.93 | 51.61 | 52.96 | 38.70 |
阿拉伯糖 | 14.00 | 11.11 | 11.07 | 9.06 | 11.58 |
葡萄糖 | 3.49 | 2.46 | 3.63 | 2.86 | 2.54 |
半乳糖 | 3.78 | 1.70 | 3.69 | 1.94 | 3.39 |
甘露糖 | 1.92 | 1.86 | 2.66 | 2.27 | 1.69 |
木质素 | 1.39 | 1.86 | 2.18 | 2.53 | 14.86 |
糠醛 | 4.47 | 4.31 | 3.87 | 3.93 | 2.87 |
甲酸 | 11.49 | 15.47 | 11.37 | 14.51 | 9.36 |
乙酸 | 3.65 | 4.51 | 3.83 | 2.96 | 2.48 |
表2 吸附-超滤的半纤维素组分
Table 2 Hemicellulose components after adsorption-ultrafiltration
糖组分 | Hau2/% | Hau3/% | Hau4/% | Hau5/% | Hau6/% |
---|---|---|---|---|---|
木糖 | 56.97 | 56.93 | 51.61 | 52.96 | 38.70 |
阿拉伯糖 | 14.00 | 11.11 | 11.07 | 9.06 | 11.58 |
葡萄糖 | 3.49 | 2.46 | 3.63 | 2.86 | 2.54 |
半乳糖 | 3.78 | 1.70 | 3.69 | 1.94 | 3.39 |
甘露糖 | 1.92 | 1.86 | 2.66 | 2.27 | 1.69 |
木质素 | 1.39 | 1.86 | 2.18 | 2.53 | 14.86 |
糠醛 | 4.47 | 4.31 | 3.87 | 3.93 | 2.87 |
甲酸 | 11.49 | 15.47 | 11.37 | 14.51 | 9.36 |
乙酸 | 3.65 | 4.51 | 3.83 | 2.96 | 2.48 |
Sample | Mw | Mn | Mw/Mn |
---|---|---|---|
Hu2 | 4.57×104 | 4.11×104 | 1.11 |
Hu6 | 6.78×104 | 3.92×104 | 1.73 |
Hau2 | 8.54×104 | 5.16×104 | 1.65 |
Hau6 | 6.47×104 | 4.48×104 | 1.44 |
表3 半纤维素分子量
Table 3 Molecular weight of hemicellulose
Sample | Mw | Mn | Mw/Mn |
---|---|---|---|
Hu2 | 4.57×104 | 4.11×104 | 1.11 |
Hu6 | 6.78×104 | 3.92×104 | 1.73 |
Hau2 | 8.54×104 | 5.16×104 | 1.65 |
Hau6 | 6.47×104 | 4.48×104 | 1.44 |
1 | Sun S L, Wen J L, Ma M G, et al. Successive alkali extraction and structural characterization of hemicelluloses from sweet sorghum stem[J]. Carbohydrate Polymers, 2013, 92(2): 2224-2231. |
2 | Giummarella N, Pu Y Q, Ragauskas A J, et al. A critical review on the analysis of lignin carbohydrate bonds[J]. Green Chemistry, 2019, 21(7): 1573-1595. |
3 | 孙世荣, 郭祎, 岳金权. 秸秆半纤维素的分离纯化及化学改性研究进展[J]. 天津造纸, 2016, 38(1): 7-12. |
Sun S R, Guo Y, Yue J Q. Straw hemicellulose research progress on isolation, purification and chemical modification[J]. Tianjin Paper Making, 2016, 38(1): 7-12. | |
4 | Del Rio J C, Rencoret J, Prinsen P, et al. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods[J]. Journal of Agricultural and Food Chemistry, 2012, 60(23): 5922-5935. |
5 | Pandey A, Soccol C R, Nigam P, et al. Biotechnological potential of agro-industrial residues(Ⅰ): Sugarcane bagasse[J]. Bioresource Technology, 2000, 74(1): 69-80. |
6 | Sahlgren C, Meinander A, Zhang H, et al. Tailored approaches in drug development and diagnostics:from molecular design to biological model systems[J]. Advanced Healthcare Materials, 2017, 6(21): 1700258. |
7 | Berglund L, Forsberg F, Jonoobi M, et al. Promoted hydrogel formation of lignin-containing arabinoxylan aerogel using cellulose nanofibers as a functional biomaterial[J]. RSC Advances, 2018, 8(67): 38219-38228. |
8 | Chen G G, Qi X M, Guan Y, et al. High strength hemicellulose-based nanocomposite film for food packaging applications [J]. ACS Sustainable Chemistry & Engineering, 2016, 4(4): 1985-1993. |
9 | van Heiningen A. Converting a kraft pulp mill into an integrated forest biorefinery[J]. Pulp & Paper-Canada, 2006, 107(6): 38-43. |
10 | 李亚辉, 雷以超, 周伦. 蔗渣碱抽提半纤维素的超滤浓缩及分离和表征[J]. 造纸科学与技术, 2018, 37(2): 32-37. |
Li Y H, Lei Y C, Zhou L. Isolation and characterization of hemicellulose obtained from alkali-extracted liquor of bagasse by ultrafiltration[J]. Paper Science & Technology, 2018, 37(2): 32-37. | |
11 | 雷以超, 王锐金, 蒋兴林, 等. 蔗渣的低固形物烧碱-AQ制浆[C]//中国造纸学会第十七届学术年会. 北京: 中国造纸学会, 2016:74-77. |
Lei Y C, Wang R J, Jiang X L, et al. Lo-solids soda AQ pulping of bagasse[C]//Proceedings of the 17th Annual Conference of CTAPI. Beijing: China Technical Association of the Paper Industry (CTAPI), 2016:74-77. | |
12 | Arnaud B, Durand S, Fanuel M, et al. Imaging study by mass spectrometry of the spatial variation of cellulose and hemicellulose structures in corn stalks[J]. Journal of Agricultural and Food Chemistry, 2020, 68(13): 4042-4050. |
13 | Maki-Arvela P, Salmi T, Holmbom B, et al. Synthesis of sugars by hydrolysis of hemicelluloses—a review[J]. Chemical Reviews, 2011, 111(9): 5638-5666. |
14 | Peng F, Peng P, Xu F, et al. Fractional purification and bioconversion of hemicelluloses[J]. Biotechnology Advances, 2012, 30(4): 879-903. |
15 | Jiang H, Chen Q Q, Ge J H, et al. Efficient extraction and characterization of polymeric hemicelluloses from hybrid poplar[J]. Carbohydrate Polymers, 2014, 101: 1005-1012. |
16 | Farhat W, Venditti R, Quick A, et al. Hemicellulose extraction and characterization for applications in paper coatings and adhesives[J]. Industrial Crops and Products, 2017, 107: 370-377. |
17 | Sun J X, Sun X F, Sun R C, et al. Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses[J]. Carbohydrate Polymers, 2004, 56(2): 195-204. |
18 | You X, Wang X, Liang C, et al. Purification of hemicellulose from sugarcane bagasse alkaline hydrolysate using an aromatic-selective adsorption resin[J]. Carbohydrate Polymers, 2019, 225: 115216. |
19 | Egüés I, Sanchez C, Mondragon I, et al. Separation and purification of hemicellulose by ultrafiltration[J]. Industrial & Engineering Chemistry Research, 2012, 51(1): 523-530. |
20 | Oriez V, Peydecastaing J, Pontalier P Y. Separation of sugarcane bagasse mild alkaline extract components by ultrafiltration – membrane screening and effect of filtration parameters[J]. Process Biochemistry, 2019, 78: 91-99. |
21 | Persson T, Jonsson A. Isolation of hemicelluloses by ultrafiltration of thermomechanical pulp mill process water—influence of operating conditions[J]. Chemical Engineering Research & Design, 2010, 88(12): 1548-1554. |
22 | Westerberg N, Sunner H, Helander M, et al. Separation of galactoglucomannans, lignin and lignin-carbohydrate complexes from hot-water-extracted Norway spruce by cross-flow filtration and adsorption chromatography[J]. BioResources, 2012, 7(4): 4501-4516. |
23 | Zhou Y F, Wang L L, Chen L C, et al. Enrichment and separation of steroidal saponins from the fibrous roots of Ophiopogon japonicus using macroporous adsorption resins[J]. RSC Advances, 2019, 9(12): 6689-6698. |
24 | Koivula E, Kallioinen M, Sainio T, et al. Enhanced membrane filtration of wood hydrolysates for hemicelluloses recovery by pretreatment with polymeric adsorbents[J]. Bioresource Technology, 2013, 143(17): 275-281. |
25 | Narron R H, Chang H M, Jameel H, et al. Soluble lignin recovered from biorefinery pretreatment hydrolyzate characterized by lignin-carbohydrate complexes[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10763-10771. |
26 | Peng F, Ren J L, Xu F, et al. Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse[J]. Journal of Agricultural and Food Chemistry, 2009, 57(14): 6305-6317. |
27 | Giummarella N, Lawoko M. Structural insights on recalcitrance during hydrothermal hemicellulose extraction from wood[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5156-5165. |
28 | Chen W J, Zhao B C, Cao X F, et al. Structural features of alkaline dioxane lignin and residual lignin from Eucalyptus grandis x E. urophylla[J]. Journal of Agricultural and Food Chemistry, 2019, 67(3): 968-974. |
29 | Thuvander J, Oinonen P, Jonsson A S. Enzymatic treatment of hemicelluloses and lignin isolated from thermomechanical pulp mill process water[J]. Chemical Engineering Journal, 2016, 296:141-145. |
30 | Naidu D S, Hlangothi S P, John M J. Bio-based products from xylan: a review[J]. Carbohydrate Polymers, 2018, 179: 28-41. |
31 | Bian J, Peng F, Peng X P, et al. Isolation of hemicelluloses from sugarcane bagasse at different temperatures: structure and properties[J]. Carbohydrate Polymers, 2012, 88(2): 638-645. |
32 | Yang H P, Yan R, Chen H P, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12/13): 1781-1788. |
33 | Bhagia S, Pu Y, Evans B R, et al. Hemicellulose characterization of deuterated switchgrass[J]. Bioresource Technology, 2018, 269: 567-570. |
34 | Zhang X M, Meng L Y, Xu F, et al. Pretreatment of partially delignified hybrid poplar for biofuels production: characterization of organosolv hemicelluloses[J]. Industrial Crops and Products, 2011, 33(2): 310-316. |
35 | Sun R, Sun X F, Tomkinson J. Hemicelluloses and their derivatives[J]. ACS Symposium Series, 2003, 864: 2-22. |
[1] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[2] | 李靖, 沈聪浩, 郭大亮, 李静, 沙力争, 童欣. 木质素基碳纤维复合材料在储能元件中的应用研究进展[J]. 化工学报, 2023, 74(6): 2322-2334. |
[3] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[4] | 钟磊, 邱学青, 张文礼. 木质素衍生炭在碱金属离子电池负极中的研究进展[J]. 化工学报, 2022, 73(8): 3369-3380. |
[5] | 王佳铭, 阮雪华, 贺高红. 面向不同工业二氧化碳分离体系的膜材料研究进展[J]. 化工学报, 2022, 73(8): 3417-3432. |
[6] | 黄丽菁, 黄继娇, 李鹏辉, 刘芷诺, 蒋康杰, 吴文娟. 木质素羟丙基磺甲基化改性及其对纤维素酶水解的影响[J]. 化工学报, 2022, 73(7): 3232-3239. |
[7] | 王江丽, 薛敏, 赵承科, 岳凤霞. 木质素分级对其应用性能的影响[J]. 化工学报, 2022, 73(5): 1894-1907. |
[8] | 王敏, 程金兰, 李鑫, 陆晶晶, 尹崇鑫, 戴红旗. 酸性助水溶剂脱除木质素机理分析[J]. 化工学报, 2022, 73(5): 2206-2221. |
[9] | 李贵贤, 王可, 王健, 孟文亮, 李婧玮, 杨勇, 范宗良, 王东亮, 周怀荣. 膜分离捕集燃煤电厂烟气CO2过程优化设计[J]. 化工学报, 2022, 73(11): 5065-5077. |
[10] | 吴中杰, 刘则艳, 谢连科, 崔美, 黄仁亮. 聚偏氟乙烯膜亲水改性及其乳液分离与重金属吸附应用[J]. 化工学报, 2021, 72(S1): 421-429. |
[11] | 王欢, 符方宝, 李琼, 席跃宾, 杨东杰. 木质素碳纳米材料制备及在催化中的应用研究进展[J]. 化工学报, 2021, 72(9): 4445-4457. |
[12] | 范洪刚, 赵丹丹, 顾菁, 王亚琢, 袁浩然, 陈勇. 生物质三组分二元混合热解特性研究[J]. 化工学报, 2021, 72(7): 3788-3800. |
[13] | 王绍宇, 马翰泽, 吴洪, 梁旭, 王洪建, 朱姿亭, 姜忠义. 有机框架膜在气体分离中的研究进展[J]. 化工学报, 2021, 72(7): 3488-3510. |
[14] | 李晓雪, 牛晓坡, 王庆法. 级孔Pt-Ni/ZSM-5对木质素衍生物加氢脱氧性能研究[J]. 化工学报, 2021, 72(5): 2626-2637. |
[15] | 王晶, 韩巧宁, 雷以廷, 唐曼, 陈丽红, 车俊达, 刘祖广. 一步法制备富氧木质素活性炭及其亚甲基蓝吸附性能[J]. 化工学报, 2021, 72(5): 2826-2836. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 |
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||