化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 520-529.doi: 10.11949/0438-1157.20201486

• 材料化学工程与纳米技术 • 上一篇    下一篇

基于吸附剂/木浆纤维纸耦合材料的空气净化

吴俊晔(),葛天舒(),吴宣楠,代彦军,王如竹   

  1. 上海交通大学制冷与低温工程研究所,上海 200240
  • 收稿日期:2020-10-28 修回日期:2021-01-22 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 葛天舒 E-mail:junyewu65@sjtu.edu.cn;baby_wo@stju.edu.cn
  • 作者简介:吴俊晔(1997—),男,硕士研究生,junyewu65@sjtu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2019YFE0104900);国家自然科学基金项目(51922070)

Indoor air purification based on adsorbent/wood pulp fiber paper coupling material

WU Junye(),GE Tianshu(),WU Xuannan,DAI Yanjun,WANG Ruzhu   

  1. Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2020-10-28 Revised:2021-01-22 Published:2021-06-20 Online:2021-06-20
  • Contact: GE Tianshu E-mail:junyewu65@sjtu.edu.cn;baby_wo@stju.edu.cn

摘要:

随着人们对室内环境质量的要求越来越高,空气净化技术已成为日益重要的研究课题。提出了一种以木浆纤维纸为基材,通过浸渍的方法将吸附剂耦合于其表面的新型空气净化材料制备技术,并对其性能进行了测试和分析。首先,制备了具有不同上胶量的木浆纤维纸并测试了它们的苯吸附性能。结果显示,浸渍硅胶三次的木浆纤维纸为最优的材料,其具有较高的吸附量及良好的稳定性。此外,在相对压力低于0.5时,苯的静态吸附试验数据和动态吸附试验数据可以分别用Freundlich模型和LDF模型较好地拟合,它们的相关系数平方R2分别不小于0.97和0.94。在吸附CO2方面,使用硅胶作为黏合剂,将13X分子筛粉末涂覆于纤维纸表面,得到的复合纤维纸材料在15 kPa和100 kPa下的CO2吸附量分别可达到1.17 mmol/g和1.92 mmol/g。可见,使用本材料可有效地对气体进行捕集处理,为制作空气过滤网提供思路和参考。

关键词: 木浆纤维纸, 苯, 二氧化碳, 浸渍, 吸附剂

Abstract:

With the increasing demand for indoor environmental quality, air purification technology has become an indispensable project. In this paper, a new preparation technology of air purification material based on wood pulp fiber paper is proposed. The adsorbent is coupled to its surface by impregnation method, and its performance is tested and studied. Firstly, wood pulp fiber paper impregnated with different quality silica gel is prepared and their benzene adsorption properties are tested. The results show that the wood pulp fiber paper impregnated by silica gel three times has high adsorption capacity and good material stability, so we conclude that for benzene adsorption, the best impregnation times are three times. In addition, when the relative pressure is lower than 0.5, the static experimental data and dynamic experimental data of benzene adsorption can be well fitted by Freundlich model and LDF model, and their square correlation coefficients R2 are greater than 0.97 and 0.94 respectively. As for CO2 adsorption, silica gel was used as adhesive to coat 13X molecular sieve powder on the surface of fiber paper. The material shows good CO2 capture performance and stability. The CO2 adsorption capacity of the composite fiber paper material at 15 kPa and 100 kPa can reach 1.17 mmol/g and 1.92 mmol/g respectively. It can be seen that this material can effectively capture different gas and provide ideas and reference for the production of air filter.

Key words: wood pulp fiber paper, benzene, carbon dioxide, impregnation, adsorbent

中图分类号: 

  • X 131.1

图1

原木浆纤维纸"

表1

木浆纤维纸的参数及对应的硅胶涂覆量"

样品尺寸/mm2原纸质量/g

单位面积上胶量/

(g/m2)

W1100×1000.894171.31
W2100×1000.891497.07
W3100×1000.92831.21

图2

不同方法处理后的纤维纸照片"

图3

各样品的扫描电镜照片"

图4

样品在-195.80℃下的氮气吸附/解吸等温线"

图5

样品的比表面积"

图6

样品的孔径分布曲线"

图7

样品的苯吸附等温线"

图8

样品W2苯吸附数据的拟合曲线及相关系数"

表2

各样品的拟合参数及平方相关系数"

样品abR12
W1154.981.07520.9947
W2199.351.10610.9942
W3202.211.11830.9927
纯硅胶377.311.30180.9760

图9

各样品的苯动态吸附曲线及拟合数据"

表3

各样品在25℃、0.1相对压力下的拟合参数及平方相关系数"

样品M(mg/g)k/min-1R22
W114.882920.092560.97699
W218.296580.094260.98660
W319.575890.086700.99608
纯硅胶32.614820.316960.94180

图10

样品的光学显微镜照片"

图11

各样品在25℃的CO2吸附等温线"

1 Oh T, Kim M, Lim J, et al. A real-time monitoring and assessment method for calculation of total amounts of indoor air pollutants emitted in subway stations [J]. Journal of the Air & Waste Management Association, 2012, 62(5): 517-526.
2 康家宁. 公共建筑室内空气主要污染物浓度水平及风险评价[D]. 北京: 北京建筑大学, 2020.
Kang J N. Concentration level and risk assessment of major indoor air pollutants in public buildings [D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020.
3 Viveiros F, Ferreira T, Silva C, et al. Meteorological factors controlling soil gases and indoor CO2 concentration: a permanent risk in degassing areas [J]. Science of the Total Environment, 2009, 407(4): 1362-1372.
4 Gebreegziabher T B, Wang S, Nam H. Adsorption of H2S, NH3 and TMA from indoor air using porous corncob activated carbon: isotherm and kinetics study [J]. Journal of Environmental Chemical Engineering, 2019, 7(4): 103234.
5 Song Y Q, Zhou X L, Wang J A. Adsorption performance of activated carbon for methane with low concentration at atmospheric pressure [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019: 1-11.
6 Lively R P, Chance R R, Kelley B T, et al. Hollow fiber adsorbents for CO2 removal from flue gas [J]. Industrial & Engineering Chemistry Research, 2009, 48(15): 7314-7324.
7 Henrique A, Karimi M, Silva J A C, et al. Analyses of adsorption behavior of CO2, CH4, and N2 on different types of BETA zeolites [J]. Chemical Engineering & Technology, 2019, 42(2): 327-342.
8 Hu Z G, Wang Y X, Shah B B, et al. CO2 capture in metal-organic framework adsorbents: an engineering perspective [J]. Advanced Sustainable Systems, 2019, 3(1): 1800080.
9 宋宝龙, 李振海. 可再生纳米复合材料净化网在中央空调系统中的应用探讨[J]. 制冷技术, 2012, 32(1): 68-71.
Song B L, Li Z H. The applied discussion of renewable nanocomposites purification device in the central air conditioning system [J]. Chinese Journal of Refrigeration Technology, 2012, 32(1): 68-71.
10 高宇翔. VOCs在活性炭固定床上的吸附动力学[D]. 广州: 华南理工大学, 2012.
Gao Y X. Adsorption dynamics of VOCs on activated carbon fixed bed [D]. Guangzhou: South China University of Technology, 2012.
11 张兵. 固定床颗粒层的除尘性能与试验研究[D]. 沈阳: 东北大学, 2013.
Zhang B. Experimental studies and dust removal features of a fixed bed granular filter [D]. Shenyang: Northeastern University, 2013.
12 程灯塔. 空气净化器内部双区静电集尘装置的性能及其整机的应用研究[D]. 上海: 东华大学, 2006.
Cheng D T. Research on the performance of a two-stage electrostatic precipitator used in air cleaners and the application of cleaners [D]. Shanghai: Donghua University, 2006.
13 杨丽君, 李维, 陈立楠, 等. 固定吸附床结构对再生和除湿效果的影响[J]. 制冷学报, 2015, 36(2): 101-105.
Yang L J, Li W, Chen L N, et al. Effect of fixed adsorption bed structure on regeneration and dehumidification [J]. Journal of Refrigeration, 2015, 36(2): 101-105.
14 熊晓敏. 空气滤纸用纸浆纤维的超声波协同碱脲改性及机理研究[D]. 济南: 齐鲁工业大学, 2019.
Xiong X M. Ultrasonic synergistic alkali urea(thiourea) modification and mechanism study of pulp fiber for air filter paper [D]. Jinan: Qilu University of Technology, 2019.
15 Tlili N, Grévillot G, Latifi A, et al. Electrical swing adsorption using new mixed matrix adsorbents for CO2 capture and recovery: experiments and modeling [J]. Industrial & Engineering Chemistry Research, 2012, 51(48): 15729-15737.
16 宋吉, 吴国明, 丁国良. 基于新能效等级标准的房间空调器的换热器设计[J]. 制冷技术, 2020, 40(3): 43-47.
Song J, Wu G M, Ding G L. Design of heat exchanger for room air conditioner based on new version of energy efficiency grade standard [J]. Chinese Journal of Refrigeration Technology, 2020, 40(3): 43-47.
17 Lin S Y, Zhang R J, Jiang X, et al. Gas adsorption properties of carbon materials and their applications in air purification [J]. Carbon, 2016, 104: 260.
18 Fang Y T, Yao W F, Guo J H, et al. Characterization and performance of novel modified silica gel/molecular sieve composite [J]. International Journal of Low-Carbon Technologies, 2012, 7(4): 271-274.
19 Pendleton P, Zettlemoyer A C. A study of the mechanism of micropore filling (II): Pore filling of a microporous silica [J]. Journal of Colloid and Interface Science, 1984, 98(2): 439-446.
20 刘忠军. 纳米限域空间内流体吸附及相变行为的基础研究——蒙特卡罗分子模拟[D]. 沈阳: 东北大学, 2011.
Liu Z J. Fundamental study of adsorption and phase transition of fluids in the confined nanospaces — Monte Carlo molecular simulation [D]. Shenyang: Northeastern University, 2011.
21 Thommes M, Smarsly B, Groenewolt M, et al. Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas [J]. Langmuir, 2006, 22(2): 756-764.
22 近藤精一, 石川达雄, 安部郁夫. 吸附科学[M]. 李国希, 译. 2版. 北京: 化学工业出版社, 2006: 65-66.
Kondo S, Takao I, Abe Y. Adsorption Science [M]. Li G X, trans. 2nd ed. Beijing: Chemical Industry Press, 2006: 65-66.
23 孙媛媛. 芦竹活性炭的制备、表征及吸附性能研究[D]. 济南: 山东大学, 2014.
Sun Y Y. Preparation, characterization and adsorption properties of activated carbon from Arundo donax L [D]. Jinan: Shandong University, 2014.
24 赵军, 张兴凯, 王云海. 硫铁矿的比表面积、孔体积及其对硫铁矿吸附能力的影响研究[J]. 中国安全生产科学技术, 2008, 4(4): 119-121.
Zhao J, Zhang X K, Wang Y H. Influence of specific surface area and pore volume of iron pyrites on adsorption capacity [J]. Journal of Safety Science and Technology, 2008, 4(4): 119-121.
25 于飞. 改性碳纳米管的制备及其对苯系物和重金属吸附特性研究[D]. 上海: 上海交通大学, 2013.
Yu F. Synthesis of modified multi-walled carbon nanotubes and their adsorption characteristic of tex and heavy metals [D]. Shanghai: Shanghai Jiaotong University, 2013.
26 王海鸿, 刘应书, 李子宜, 等. 一种改进的LDF模型及其在活性炭吸附中的应用[J]. 化工学报, 2014, 65(10): 3953-3959.
Wang H H, Liu Y S, Li Z Y, et al. A new modified linear driving force model applied to activated carbon adsorption [J]. CIESC Journal, 2014, 65(10): 3953-3959.
27 李忠, 赵月春, 奚红霞, 等. 一种新的与LDF模型相容的颗粒内浓度分布模型[J]. 化工学报, 2000, 51(6): 792-796.
Li Z, Zhao Y C, Xi H X, et al. New concentration profile within a particle corresponding to LDF model [J]. Journal of Chemical Industry and Engineering (China), 2000, 51(6): 792-796.
28 姬长发, 王展荣, 姬晨阳, 等. 流速对盘管内冰浆流动及换热特性的影响研究[J]. 制冷技术, 2019, 39(1): 67-71.
Ji C F, Wang Z R, Ji C Y, et al. Study on influence of flow velocity on flow and heat transfer characteristics of ice slurry in coil tubes [J]. Chinese Journal of Refrigeration Technology, 2019, 39(1): 67-71.
29 Zhang X J, Qiu L M. Moisture transport and adsorption on silica gel-calcium chloride composite adsorbents [J]. Energy Conversion and Management, 2007, 48(1): 320-326.
30 Chang K S, Chen M T, Chung T W. Effects of the thickness and particle size of silica gel on the heat and mass transfer performance of a silica gel-coated bed for air-conditioning adsorption systems [J]. Applied Thermal Engineering, 2005, 25(14/15): 2330-2340.
[1] 李亚飞, 邓建强, 何阳. 跨临界CO2快速膨胀过程中非平衡冷凝和闪蒸机理的数值研究[J]. 化工学报, 2022, 73(7): 2912-2923.
[2] 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789.
[3] 李淼, 赵虹, 姜标, 陈思远, 闫龙. 煤制乙炔关键中间体BaC2合成的热力学分析[J]. 化工学报, 2022, 73(5): 1908-1919.
[4] 杨珊珊, 姚宇洋, 董云迪, 徐志鹏, 高尚上, 阮慧敏, 沈江南. 基于二苯并-18-冠-6基体改性的K+选择性离子交换膜的制备及性能研究[J]. 化工学报, 2022, 73(4): 1781-1793.
[5] 许婉婷, 许波, 王鑫, 陈振乾. 方形微通道内超临界CO2流动换热特性研究[J]. 化工学报, 2022, 73(4): 1534-1545.
[6] 孟文亮, 李贵贤, 周怀荣, 李婧玮, 王健, 王可, 范学英, 王东亮. 绿氢重构的粉煤气化煤制甲醇近零碳排放工艺研究[J]. 化工学报, 2022, 73(4): 1714-1723.
[7] 孙铭泽, 马宁, 李浩然, 姜海峰, 洪文鹏, 牛晓娟. 中低温超临界CO2及其混合工质布雷顿循环热力学分析[J]. 化工学报, 2022, 73(3): 1379-1388.
[8] 汪森林, 李照志, 邵应娟, 钟文琪. 超临界二氧化碳垂直管内传热恶化数值模拟研究[J]. 化工学报, 2022, 73(3): 1072-1082.
[9] 王建, 雷子萱, 姚家钰, 李建, 刘育红. 对苯二甲醛酚醛树脂的制备及其固化动力学研究[J]. 化工学报, 2022, 73(3): 1403-1415.
[10] 徐一鸣, 袁华, 刘素丽, 李平, 严佩蓉, 赵曦, 卢俊华, 赵唯, 张学兰. 微通道反应器中工业混合直链烷基苯磺酸盐的连续合成工艺研究[J]. 化工学报, 2022, 73(3): 1184-1193.
[11] 毛恒, 王月, 王森, 刘伟民, 吕静, 陈甫雪, 赵之平. APTES改性ZIF-L/PEBA混合基质膜强化渗透汽化分离苯酚研究[J]. 化工学报, 2022, 73(3): 1389-1402.
[12] 王小西, 李笑艳, 王保伟. 介质阻挡放电微等离子体分解二氧化碳研究[J]. 化工学报, 2022, 73(3): 1343-1350.
[13] 黄子轩, 陈欢, 李海, 王明龙, 陈光进, 刘蓓. ZIF-8浆液中试分离CO2/N2过程模拟及能耗分析[J]. 化工学报, 2022, 73(1): 322-331.
[14] 庞子凡, 蒋斌, 朱春英, 马友光, 付涛涛. 微通道内CO2吸收与传质及资源化利用的研究进展[J]. 化工学报, 2022, 73(1): 122-133.
[15] 王乾浩, 赵璐, 孙付琳, 房克功. ZSM-5催化剂与低温等离子体协同转化H2S-CO2制合成气[J]. 化工学报, 2022, 73(1): 255-265.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!