化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 530-538.DOI: 10.11949/0438-1157.20200997
收稿日期:
2020-07-23
修回日期:
2020-09-18
出版日期:
2021-06-20
发布日期:
2021-06-20
通讯作者:
彭湘红
作者简介:
韩威(1998—),男,硕士研究生,基金资助:
HAN Wei(),ZHAN Jun,SHI Hong,ZHAO Dong,CAI Shaojun,PENG Xianghong(
),XIAO Biao,GAO Yu
Received:
2020-07-23
Revised:
2020-09-18
Online:
2021-06-20
Published:
2021-06-20
Contact:
PENG Xianghong
摘要:
以来源丰富的大豆蛋白为前体,采用水热法和乙醇沉淀的分离方法合成了氮和硫双掺杂的石墨烯量子点(N,S-GQDs)。通过红外光谱(FTIR)、X射线光电子能谱(XPS)、紫外-可见光光谱(UV-vis)、高分辨率透射电镜(HRTEM)、原子力显微镜(AFM)和荧光光谱表征了N,S-GQDs的结构,及其对铁离子的检测性能。结果表明:大豆蛋白-柠檬酸-尿素水溶液在220℃水热温度下反应10 h,获得荧光量子效率为9.23%的N,S-GQDs,其水分散液具有明亮的蓝色荧光。N, S-GQDs具有0.34 nm的石墨烯晶格并展现出清晰的快速傅里叶变换图像,其厚度为2~5 nm。N, S-GQDs对Fe3+的检测限为0.95 μmol/L。本工作乙醇沉淀的简便方法将是一种快速获得N,S-GQDs固体的方法。
中图分类号:
韩威, 詹俊, 石红, 赵东, 蔡少君, 彭湘红, 肖标, 高宇. 氮和硫双掺杂石墨烯量子点的合成及其性能研究[J]. 化工学报, 2021, 72(S1): 530-538.
HAN Wei, ZHAN Jun, SHI Hong, ZHAO Dong, CAI Shaojun, PENG Xianghong, XIAO Biao, GAO Yu. Synthesis and properties of nitrogen and sulfur codoped graphene quantum dots[J]. CIESC Journal, 2021, 72(S1): 530-538.
图1 N, S-GQDs的TEM图(a)、尺寸分布(b)、高分辨TEM图(c)和选区衍射图(d)
Fig.1 TEM image (a), size distribution (b), HRTEM image (c) and selected area diffraction pattern (d) of the N, S –GQDs
图2 N, S-GQDs的AFM图(a);图(a)中实线(b)与虚线(c)处的厚度分布曲线
Fig.2 AFM image of the N, S-GQDs (a); Corresponding thickness profiles along full line(b) and dotted line (c) in Fig.(a)
M/% | QY/% |
---|---|
0 | 4.9 |
2.5 | 6.12 |
5.0 | 9.23 |
7.5 | 7.25 |
15.0 | 5.99 |
25.0 | 5.1 |
表1 大豆蛋白与柠檬酸-尿素质量比(M)对N, S-GQDs的荧光量子效率(QY)的影响
Table 1 Effect of the mass ratio of the soybean protein to citrate urea (M) on fluorescence quantum yield(QY) of N, S-GQDs
M/% | QY/% |
---|---|
0 | 4.9 |
2.5 | 6.12 |
5.0 | 9.23 |
7.5 | 7.25 |
15.0 | 5.99 |
25.0 | 5.1 |
图5 N, S-GQDs水分散液的光谱图:紫外可见吸收光谱(a);最佳激发/发射荧光光谱(插图是样品在日光和紫外线下的对比照片)(b);不同激发波长的荧光光谱图(c);N, S-GQDs的时间分辨光致发光衰减与拟合曲线(d)
Fig.5 UV-vis absorption spectran(a); Fluorescence excitation (λEX = 330 nm) and emission spectra (λEM = 419 nm) of the N, S-GQDs dispersed in water at room temperature (inset: photographs under daylight and UV radiation)(b); Fluorescence emission spectra of the N, S-GQDs obtained at different excitation wavelengths (c); Time-resolved PL decay and ?tting curves for the as-prepared NCQDs(d)
图6 N, S-GQDs对金属离子的荧光响应性:不同金属离子的荧光猝灭性(a);不同Fe3+浓度的荧光光谱(λEx = 330 nm) (b); 荧光强度与Fe3+浓度的线性曲线(c)
Fig.6 Fluorescence response of N, S-GQDs by metal ions: Fluorescence quenching induced by different metal ions in a concentration of 1.0 mmol/L (a); Fluorescence spectra of N, S-GQDs at various concentrations of Fe3+ (λEx = 330 nm) (b); Linear relationship between fluorescence and Fe3+ concentration at 0—1.0 mmol/L(c)
1 | 张亚婷, 张博超, 张建兰, 等. “自下而上”化学合成纳米石墨烯的研究进展[J]. 化工学报, 2020, 71(6): 2628-2642. |
Zhang Y T, Zhang B C, Zhang J L, et al. Research progress in “bottom-up” chemical synthesis of nanographenes[J]. CIESC Journal, 2020, 71(6): 2628-2642. | |
2 | Wang G, Guo Q, Chen D, et al. Facile and highly effective synthesis of controllable lattice sulfur-doped graphene quantum dots via hydrothermal treatment of durian[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5750-5759. |
3 | 贺新福, 龙雪颖, 吴红菊, 等. 氮掺杂石墨烯/多孔碳复合材料的制备及其氧还原催化性能[J]. 化工学报, 2019, 70(6): 2308-2315. |
He X F, Long X Y, Wu H J, et al. Synthesis of N-doped graphene/porous carbon composite and its electrocatalytic performance on oxygen reduction reaction[J]. CIESC Journal, 2019, 70(6): 2308-2315. | |
4 | Yan Y B, Gong J, Chen J, et al. Recent advances on graphene quantum dots: from chemistry and physics to applications[J]. Advanced Materials, 2019, 31(21): 1808283. |
5 | Liu W W, Zhang M W, Li M, et al. Advanced electrode materials comprising of structure-engineered quantum dots for high-performance asymmol/letric micro-supercapacitors[J]. Advanced Energy Materials, 2020, 10(8): 1903724. |
6 | Jin S H, Kim D H, Jun G H, et al. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups[J]. ACS Nano, 2013, 7(2): 1239-1245. |
7 | Zhang Y T, Li K K, Ren S Z, et al. Coal-derived graphene quantum dots produced by ultrasonic physical tailoring and their capacity for Cu(Ⅱ) detection[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(11): 9793-9799. |
8 | Pan D Y, Zhang J C, Li Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots[J]. Advanced Materials, 2010, 22(6): 734-738. |
9 | Bhattacharyya S, Ehrat F, Urban P, et al. Effect of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots[J]. Nature Communications, 2017, 8(1): 1401. |
10 | Kalytchuk S, Poláková K, Wang Y, et al. Carbon dot nanothermometry: intracellular photoluminescence lifetime thermal sensing[J]. ACS Nano, 2017, 11(2): 1432-1442. |
11 | Meng W X, Bai X, Wang B Y, et al. Biomass-derived carbon dots and their applications[J]. Energy & Environmental Materials, 2019, 2(3): 172-192. |
12 | Liu M L, Chen B B, Li C M, et al. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications[J]. Green Chemistry, 2019, 21(3): 449-471. |
13 | Chung S, Revia R A, Zhang M Q. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy[J]. Advanced Materials, 2019: 1904362. |
14 | 陈云, 王念贵. 大豆蛋白质科学与材料[M]. 北京: 化学工业出版社, 2014: 10. |
Chen Y, Wang N G. Soybean Protein Science and Materials[M]. Beijing: Chemical Industry Press, 2014: 10. | |
15 | Li Y, Zhao Y, Cheng H H, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups[J]. Journal of the American Chemical Society, 2012, 134(1): 15-18. |
16 | Zhu S J, Meng Q N, Wang L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging[J]. Angewandte Chemie International Edition, 2013, 52(14): 3953-3957. |
17 | Zhan J, Peng R, Wei S, et al. Ethanol-precipitation-assisted highly efficient synthesis of nitrogen-doped carbon quantum dots from chitosan[J]. ACS Omega, 2019, 4(27): 22574-22580. |
18 | 王艳洁, 那广水, 王震, 等. 检出限的涵义和计算方法[J]. 化学分析计量, 2012, 21(5): 85-88. |
Wang Y J, Na G S, Wang Z, et al. Connotation and calculation methods of detection limit[J]. Chemical Analysis and Meterage, 2012, 21(5): 85-88. | |
19 | Qu D, Zheng M, Du P, et al. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts[J]. Nanoscale, 2013, 5(24): 12272-12277. |
20 | Ye R Q, Xiang C S, Lin J, et al. Coal as an abundant source of graphene quantum dots[J]. Nature Communications, 2013, 4: 2943. |
21 | Li Y, Hu Y, Zhao Y, et al. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics[J]. Advanced Materials, 2011, 23(6): 776-780. |
22 | Zhou J, Booker C, Li R, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs)[J]. Journal of the American Chemical Society, 2007, 129(4): 744-745. |
23 | Biscarat J, Bechelany M, Pochat-Bohatier C, et al. Graphene-like BN/gelatin nanobiocomposites for gas barrier applications[J]. Nanoscale, 2015, 7(2): 613-618. |
24 | Wang D, Wang L, Dong X Y, et al. Chemically tailoring graphene oxides into fluorescent nanosheets for Fe3+ ion detection[J]. Carbon, 2012, 50(6): 2147-2154. |
25 | Yang Y, Cui J, Zheng M, et al. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan[J]. Chemical Communications, 2012, 48(3): 380-382. |
26 | Liang Z C, Zeng L, Cao X D, et al. Sustainable carbon quantum dots from forestry and agricultural biomass with amplified photoluminescence by simple NH4OH passivation[J]. J. Mater. Chem. C, 2014, 2(45): 9760-9766. |
27 | Zhao S, Lan M, Zhu X, et al. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging[J]. ACS Applied Materials & Interfaces, 2015, 7(31): 17054-17060. |
28 | Liu X L, Jiang H, Ye J, et al. Nitrogen-doped carbon quantum dot stabilized magnetic iron oxide nanoprobe for fluorescence, magnetic resonance, and computed tomography triple-modal in vivo bioimaging[J]. Advanced Functional Materials, 2016, 26(47): 8694-8706. |
29 | Wang Y F, Dong L H, Xiong R L, et al. Practical access to bandgap-like N-doped carbon dots with dual emission unzipped from PAN@PMMOL/LA core–shell nanoparticles[J]. Journal of Materials Chemistry C, 2013, 1(46): 7731. |
30 | Wang W L, Wang Z F, Liu J J, et al. One-pot facile synthesis of graphene quantum dots from rice husks for Fe3+ sensing[J]. Industrial & Engineering Chemistry Research, 2018, 57(28): 9144-9150. |
31 | Li S, Li Y, Cao J, et al. Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+[J]. Analytical Chemistry, 2014, 86(20): 10201-10207. |
32 | Ananthanarayanan A, Wang X W, Routh P, et al. Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing[J]. Advanced Functional Materials, 2014, 24(20): 3021-3026. |
[1] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[2] | 段重达, 姚小伟, 朱家华, 孙静, 胡南, 李广悦. 环境因素对克雷白氏杆菌诱导碳酸钙沉淀的影响[J]. 化工学报, 2023, 74(8): 3543-3553. |
[3] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[4] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[5] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[6] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[7] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[8] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[9] | 祖凌鑫, 胡荣庭, 李鑫, 陈余道, 陈广林. 木质生物质化学组分的碳释放产物特征和反硝化利用程度[J]. 化工学报, 2023, 74(3): 1332-1342. |
[10] | 郑杰元, 张先伟, 万金涛, 范宏. 丁香酚环氧有机硅树脂的制备及其固化动力学研究[J]. 化工学报, 2023, 74(2): 924-932. |
[11] | 付家崴, 陈帅帅, 方凯伦, 蒋新. 微反应器共沉淀反应制备铜锰催化剂[J]. 化工学报, 2023, 74(2): 776-783. |
[12] | 陈健鑫, 朱瑞杰, 盛楠, 朱春宇, 饶中浩. 纤维素基生物质多孔炭的制备及其超级电容器性能研究[J]. 化工学报, 2022, 73(9): 4194-4206. |
[13] | 郝泽光, 张乾, 高增林, 张宏文, 彭泽宇, 杨凯, 梁丽彤, 黄伟. 生物质与催化裂化油浆共热解协同作用研究[J]. 化工学报, 2022, 73(9): 4070-4078. |
[14] | 张东旺, 杨海瑞, 周托, 黄中, 李诗媛, 张缦. 生物质锅炉对流受热面积灰冷态模拟实验研究[J]. 化工学报, 2022, 73(8): 3731-3738. |
[15] | 刘新华, 韩振南, 韩健, 梁斌, 张楠, 胡善伟, 白丁荣, 许光文. 基于热解与燃烧反应重构的低NO x 解耦燃烧原理与技术[J]. 化工学报, 2022, 73(8): 3355-3368. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 644
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 585
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||