化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 218-226.DOI: 10.11949/0438-1157.20201489
收稿日期:
2020-10-28
修回日期:
2021-02-02
出版日期:
2021-06-20
发布日期:
2021-06-20
通讯作者:
张小松
作者简介:
孙博(1992—),男,博士研究生,基金资助:
SUN Bo1,2(),WANG Jianwei1,2,ZHANG Xiaosong1,2()
Received:
2020-10-28
Revised:
2021-02-02
Online:
2021-06-20
Published:
2021-06-20
Contact:
ZHANG Xiaosong
摘要:
电渗析溶液再生与传统热再生相比具有较大的节能潜力,近年来受到了越来越多的关注。目前有关电渗析溶液再生的研究主要都集中在系统层面的分析,而缺乏对电渗析传质机理的认识。为此,建立了描述电渗析在高浓度下的传质理论模型,并试验探究了不同电流密度、体积比及初始浓度对系统性能的影响。结果表明,模型和试验结果吻合很好,误差小于±4%。体积比越大时,系统再生性能越好,但溶液产量也越低;电流密度越大时,系统再生性能越好,但系统能耗也越高;初始浓度越高时,系统电流效率和再生性能越低,同时膜堆中浓差极化系数也越低。在实际应用时应权衡以上因素以实现更高的系统性能和效率。
中图分类号:
孙博, 王建伟, 张小松. 基于电渗析的溶液再生传质模型及性能分析[J]. 化工学报, 2021, 72(S1): 218-226.
SUN Bo, WANG Jianwei, ZHANG Xiaosong. Mass transfer model and performance analysis of liquid desiccant regeneration by electrodialysis[J]. CIESC Journal, 2021, 72(S1): 218-226.
测量仪器 | 测量参数 | 型号 | 精度 | 量程 |
---|---|---|---|---|
高精度密度计 | 密度 | DA-130N | 0.001 g/cm3 | 0.0000~ 2.0000 g/cm3 |
毫米标尺 | 体积 | 6 L | 0.02 L | 0~6 L |
电导率仪 | 温度 | MP515-03 | 0.4℃ | 5~60℃ |
质量天平 | 质量 | A: HLD-30002 | 0.1 g | 0~3000 g |
整流电源 | 电压/ 电流 | 定制 | 0.1 V/ 0.1 A | 0~50 V/0~10 A |
蠕动泵 | 流量 | BT-600CA | 0.6 L/h | 0~180 L/h |
表1 测量仪器型号及精度
Table 1 Type and accuracy of measuring instrument
测量仪器 | 测量参数 | 型号 | 精度 | 量程 |
---|---|---|---|---|
高精度密度计 | 密度 | DA-130N | 0.001 g/cm3 | 0.0000~ 2.0000 g/cm3 |
毫米标尺 | 体积 | 6 L | 0.02 L | 0~6 L |
电导率仪 | 温度 | MP515-03 | 0.4℃ | 5~60℃ |
质量天平 | 质量 | A: HLD-30002 | 0.1 g | 0~3000 g |
整流电源 | 电压/ 电流 | 定制 | 0.1 V/ 0.1 A | 0~50 V/0~10 A |
蠕动泵 | 流量 | BT-600CA | 0.6 L/h | 0~180 L/h |
1 | 李震, 江亿, 陈晓阳, 等. 溶液除湿空调及热湿独立处理空调系统[J]. 暖通空调, 2003, 33(6): 26-29, 33. |
Li Z, Jiang Y, Chen X Y, et al. Liquid desiccant air conditioning and independent humidity control air conditioning systems [J]. HV & AC, 2003, 33(6): 26-29, 33. | |
2 | Yin Y G, Qian J F, Zhang X S. Recent advancements in liquid desiccant dehumidification technology [J]. Renewable and Sustainable Energy Reviews, 2014, 31: 38-52. |
3 | Xie Y, Zhang T, Liu X H. Performance investigation of a counter-flow heat pump driven liquid desiccant dehumidification system [J]. Energy, 2016, 115: 446-457. |
4 | Shukla D L, Modi K V. A technical review on regeneration of liquid desiccant using solar energy [J]. Renewable and Sustainable Energy Reviews, 2017, 78: 517-529. |
5 | Li X W, Zhang X S. Membrane air-conditioning system driven by renewable energy [J]. Energy Conversion and Management, 2012, 53(1): 189-195. |
6 | Guo Y, Ma Z J, Al-Jubainawi A, et al. Using electrodialysis for regeneration of aqueous lithium chloride solution in liquid desiccant air conditioning systems [J]. Energy and Buildings, 2016, 116: 285-295. |
7 | 郑智颖, 李凤臣, 李倩, 等. 海水淡化技术应用研究及发展现状[J]. 科学通报, 2016, 61(21): 2344-2370. |
Zheng Z Y, Li F C, Li Q, et al. State-of-the-art of R & D on seawater desalination technology [J]. Chinese Science Bulletin, 2016, 61(21): 2344-2370. | |
8 | 黄维菊, 魏星. 膜分离技术概论[M]. 北京: 国防工业出版社, 2016. |
Huang W J, Wei X. Introduction to Membrane Separation Technology [M]. Beijing: National Defense Industry Press, 2016. | |
9 | 李达, 梁彩华, 蒋东梅, 等. 热源塔热泵溶液低压沸腾再生装置性能研究[J]. 制冷技术, 2017, 37(2): 25-31. |
Li D, Liang C H, Jiang D M, et al. Research on performance of low pressure boiling solution regeneration device of heat-source tower heat pump [J]. Chinese Journal of Refrigeration Technology, 2017, 37(2): 25-31. | |
10 | 许骏, 王志, 王纪孝, 等. 反渗透膜技术研究和应用进展[J]. 化学工业与工程, 2010, 27(4): 351-357. |
Xu J, Wang Z, Wang J X, et al. Progress in the development and application of reverse osmosis membrane technology [J]. Chemical Industry and Engineering, 2010, 27(4): 351-357. | |
11 | Al-Sulaiman F A, Gandhidasan P, Zubair S M. Liquid desiccant based two-stage evaporative cooling system using reverse osmosis (RO) process for regeneration [J]. Applied Thermal Engineering, 2007, 27(14/15): 2449-2454. |
12 | Yan H Y, Wang Y M, Wu L, et al. Multistage-batch electrodialysis to concentrate high-salinity solutions: process optimisation, water transport, and energy consumption [J]. Journal of Membrane Science, 2019, 570/571: 245-257. |
13 | 张维润, 樊雄. 电渗析浓缩海水制盐[J]. 水处理技术, 2009, 35(2): 1-4. |
Zhang W R, Fan X. Salt making from sea water by electrodialysis concentration [J]. Technology of Water Treatment, 2009, 35(2): 1-4. | |
14 | Strathmann H. Electrodialysis, a mature technology with a multitude of new applications [J]. Desalination, 2010, 264(3): 268-288. |
15 | 张影. 电渗析浓缩浓盐水试验研究与多段浓缩流程优化[D]. 大连: 大连理工大学, 2014. |
Zhang Y. Experimental study on saline water concentration with electrodialysis and optimization of multi-stage process [D]. Dalian: Dalian University of Technology, 2014. | |
16 | Li X W, Zhang X S. Photovoltaic-electrodialysis regeneration method for liquid desiccant cooling system [J]. Solar Energy, 2009, 83(12): 2195-2204. |
17 | Cheng Q, Zhang X S. A solar desiccant pre-treatment electrodialysis regeneration system for liquid desiccant air-conditioning system [J]. Energy and Buildings, 2013, 67: 434-444. |
18 | Cheng Q, Jiao S. Experimental and theoretical research on the current efficiency of the electrodialysis regenerator for liquid desiccant air-conditioning system using LiCl solution [J]. International Journal of Refrigeration, 2018, 96: 1-9. |
19 | 刘琳, 程清, 许文豪, 等. 溶液温度对基于电渗析再生的溶液除湿空调性能的影响[J]. 制冷技术, 2019, 39(4): 13-18. |
Liu L, Cheng Q, Xu W H, et al. Effect of liquid temperature on performance of liquid desiccant air-conditioning system based on electrodialysis regeneration [J]. Chinese Journal of Refrigeration Technology, 2019, 39(4): 13-18. | |
20 | Al-Jubainawi A, Ma Z J, Guo Y, et al. Factors governing mass transfer during membrane electrodialysis regeneration of LiCl solution for liquid desiccant dehumidification systems [J]. Sustainable Cities and Society, 2017, 28: 30-41. |
21 | Fidaleo M, Moresi M. Electrodialytic desalting of model concentrated NaCl brines as such or enriched with a non-electrolyte osmotic component [J]. Journal of Membrane Science, 2011, 367(1/2): 220-232. |
22 | Tanaka Y. Fundamental properties of ion exchange membranes [M]//Ion Exchange Membranes. Amsterdam: Elsevier, 2015: 29-65. |
23 | Sun B, Zhang M X, Huang S F, et al. Performance evaluation on regeneration of high-salt solutions used in air conditioning systems by electrodialysis [J]. Journal of Membrane Science, 2019, 582: 224-235. |
24 | Sun B, Zhang M X, Huang S F, et al. Limiting concentration during batch electrodialysis process for concentrating high salinity solutions: a theoretical and experimental study [J]. Desalination, 2021, 498: 114793. |
25 | Mitko K, Turek M. Concentration distribution along the electrodialyzer [J]. Desalination, 2014, 341: 94-100. |
26 | Noble R D, Stern S A. Membrane Separations Technology - Principles and Applications [M]. Amsterdam: Elsevier, 1995. |
27 | Mohammadi T, Moheb A, Sadrzadeh M, et al. Modeling of metal ion removal from wastewater by electrodialysis [J]. Separation and Purification Technology, 2005, 41(1): 73-82. |
28 | Conde M R. Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design [J]. International Journal of Thermal Sciences, 2004, 43(4): 367-382. |
29 | Taylor J R, Thompson W. An introduction to error analysis: the study of uncertainties in physical measurements [J]. Physics Today, 1998, 51(1): 57-58. |
30 | 文先太, 曹先齐, 余鹏飞, 等. 新型热源塔溶液再生系统性能优化分析与试验研究[J]. 化工学报, 2018, 69(5): 2226-2232. |
Wen X T, Cao X Q, Yu P F, et al. Energy-saving analysis and experimental study of a new heat-source tower solution regeneration system [J]. CIESC Journal, 2018, 69(5): 2226-2232. | |
31 | Huang S F, Lu X, Zuo W D, et al. Model-based optimal operation of heating tower heat pump systems [J]. Building and Environment, 2019, 160: 106199. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[3] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[4] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[7] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[8] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[9] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[10] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[11] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[12] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[13] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[14] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[15] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||