化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 127-133.DOI: 10.11949/0438-1157.20201496
收稿日期:
2020-10-28
修回日期:
2021-01-27
出版日期:
2021-06-20
发布日期:
2021-06-20
通讯作者:
李舒宏
作者简介:
徐梦凯(1994—),男,博士研究生,基金资助:
XU Mengkai(),LI Shuhong(),JIN Zhenghao
Received:
2020-10-28
Revised:
2021-01-27
Online:
2021-06-20
Published:
2021-06-20
Contact:
LI Shuhong
摘要:
通过试验研究了使用氨-水-溴化锂三元工质对氨吸收式制冷性能的影响。根据现有研究,工质中溴化锂的质量分数设定为5%、10%、15%和20%,试验中发生温度设定为90~130℃,蒸发温度设定为-19~-4℃,冷却水温度设定为22~33℃。通过试验发现,溴化锂质量分数在15%时对COP提升效果最好,发生温度在130℃时性能系数可以达到0.408,蒸发温度在-4℃时性能系数可达0.410,冷却水温度在22℃时性能系数可以达到0.412;而且添加三元工质可以减小精馏能耗且充分利用低品位热能,因此采用氨-水-溴化锂三元工质可以在高效利用热能情况下改善氨吸收式制冷系统的劣势。
中图分类号:
徐梦凯, 李舒宏, 金正浩. 氨-水-溴化锂三元工质氨吸收式制冷性能[J]. 化工学报, 2021, 72(S1): 127-133.
XU Mengkai, LI Shuhong, JIN Zhenghao. Performance of ammonia-water-lithium bromide ternary working fluid absorption refrigeration[J]. CIESC Journal, 2021, 72(S1): 127-133.
图1 氨吸收式制冷系统设计图1—回流冷凝器;2—精馏塔;3—发生器;4—溶液换热器;5—节流阀;6—吸收器;7—溶液泵;8—冷凝器;9—储氨罐;10—过冷器;11—节流阀;12—蒸发器
Fig.1 Schematic diagram of AARS experiment platform applied ternary working fluid
编号 | 名称 | 信息 |
---|---|---|
1 | 铂电阻温度计 | 精度0.1℃;材料Pt100 |
2 | 低压压力传感器 | 精度0.15% FS;最大量程0.6 MPa |
3 | 高压压力传感器 | 精度0.15% FS;最大量程2.0 MPa |
4 | 电功率计 | 精度0.3%×(示数+ 0.2×FS) |
5 | 电子天平 | 范围0~500 g;精度1 g |
6 | 水流量计 | 精度1 kg/h;最大量程600 kg/h |
7 | 溴化锂 | 纯度99.9% |
表1 试验中主要仪器与材料信息
Table 1 Specifications of main equipment used in experiments
编号 | 名称 | 信息 |
---|---|---|
1 | 铂电阻温度计 | 精度0.1℃;材料Pt100 |
2 | 低压压力传感器 | 精度0.15% FS;最大量程0.6 MPa |
3 | 高压压力传感器 | 精度0.15% FS;最大量程2.0 MPa |
4 | 电功率计 | 精度0.3%×(示数+ 0.2×FS) |
5 | 电子天平 | 范围0~500 g;精度1 g |
6 | 水流量计 | 精度1 kg/h;最大量程600 kg/h |
7 | 溴化锂 | 纯度99.9% |
1 | Abed A M, Alghoul M A, Sopian K, et al. Enhancement aspects of single stage absorption cooling cycle: a detailed review [J]. Renewable and Sustainable Energy Reviews, 2017, 77: 1010-1045. |
2 | 陈光明, 石玉琦. 吸收式制冷(热泵)循环流程研究进展[J]. 制冷学报, 2017, 38(4): 1-22. |
Chen G M, Shi Y Q. State-of-the-art absorption refrigeration and heat pump cycles [J]. Journal of Refrigeration, 2017, 38(4): 1-22. | |
3 | 李星, 徐士鸣, 李见波. 基于R124-DMAC为工质对的余热吸收式制冷[J]. 化工学报, 2015, 66(5): 1883-1890. |
Li X, Xu S M, Li J B. Absorption refrigeration cycle driven by waste heat using R124-DMAC as working fluids [J]. CIESC Journal, 2015, 66(5): 1883-1890. | |
4 | 贾炯, 王辉涛, 刘泛函, 等. 基于R124/DMAC为工质的压缩吸收式制冷系统的性能分析[J]. 化工进展, 2017, 36(7): 2436-2442. |
Jia J, Wang H T, Liu F H, et al. Performance study of compressive energy absorption refrigeration system based on R124/DMAC mixture [J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2436-2442. | |
5 | 王刚, 解国珍, 王亮亮. 溴化锂吸收式循环的内外热物理参数与机组制冷特性耦合[J]. 化工学报, 2012, 63(S2): 1-7. |
Wang G, Xie G Z, Wang L L. Coupling of lithium bromide absorption cycle inside and outside thermal physical parameters and refrigeration unit characteristics [J]. CIESC Journal, 2012, 63(S2): 1-7. | |
6 | 王红斌, 彭佳杰, 孙海权, 等. 硅胶-水吸附式冷风机组的设计及性能试验[J]. 化工学报, 2019, 70(S1): 186-192. |
Wang H B, Peng J J, Sun H Q, et al. Design and experimental study on silica gel-water adsorption air cooler [J]. CIESC Journal, 2019, 70(S1): 186-192. | |
7 | 潘权稳, 王如竹. 热驱动的双模式冷电联供系统的性能分析[J]. 化工学报, 2018, 69(S2): 373-378. |
Pan Q W, Wang R Z. Analysis on performance of thermally driven cooling and power cogeneration system with dual working mode [J]. CIESC Journal, 2018, 69(S2): 373-378. | |
8 | 孙艳军, 邸高雷, 夏娟, 等. 以离子液体为吸收剂的吸收式制冷循环热力学分析[J]. 化工学报, 2018, 69(S2): 38-44. |
Sun Y J, Di G L, Xia J, et al. Thermodynamic analysis of absorption refrigeration cycles using ionic liquids as absorbents [J]. CIESC Journal, 2018, 69(S2): 38-44. | |
9 | 刘洋, 韩吉田, 游怀亮. 基于SOFC/GT/TCO2复合动力循环和溴化锂制冷机的冷热电联供系统性能[J]. 化工学报, 2018, 69(S2): 341-349. |
Liu Y, Han J T, You H L. Performance of combined cooling, heating and power system based on SOFC/GT/TCO2 integrated power cycle and LiBr-water absorption chiller [J]. CIESC Journal, 2018, 69(S2): 341-349. | |
10 | 李艺群, 罗春欢, 李娜, 等. 基于吸收式制冷循环的CaCl2-LiCl/H2O工质对研究[J]. 化工学报, 2019, 70(9): 3483-3494. |
Li Y Q, Luo C H, Li N, et al. Study on CaCl2-LiCl/H2O as working pair of absorption refrigeration cycle [J]. CIESC Journal, 2019, 70(9): 3483-3494. | |
11 | 卞宜峰, 何国庚, 蔡德华, 等. 吸收式制冷工质对的研究进展[J]. 制冷学报, 2015, 36(6): 17-26. |
Bian Y F, He G G, Cai D H, et al. Research progress of absorption refrigeration working pairs [J]. Journal of Refrigeration, 2015, 36(6): 17-26. | |
12 | 陆至羚, 柳建华, 张良, 等. 氨水吸收式制冷系统性能与精馏性能试验分析[J]. 流体机械, 2015, 43(4): 66-69. |
Lu Z L, Liu J H, Zhang L, et al. Experimental analysis of ammonia absorption refrigeration system performance and distillation performance [J]. Fluid Machinery, 2015, 43(4): 66-69. | |
13 | 翁晶凯, 柳建华, 张良, 等. 2种精馏塔对氨水吸收式制冷机性能的影响[J]. 化学工程, 2014, 42(6): 24-28. |
Weng J K, Liu J H, Zhang L, et al. Effect of two types of rectifying column on performance of ammonia absorption chiller [J]. Chemical Engineering (China), 2014, 42(6): 24-28. | |
14 | 陆至羚, 柳建华, 张良, 等. 氨水吸收式制冷系统性能模拟分析[J]. 制冷技术, 2016, 36(2): 16-20. |
Lu Z L, Liu J H, Zhang L, et al. Simulation analysis of performance of ammonia absorption refrigeration system [J]. Chinese Journal of Refrigeration Technology, 2016, 36(2): 16-20. | |
15 | Jiang M N, Xu S M, Wu X, et al. Heat and mass transfer characteristics of R124-DMAC bubble absorption in a vertical tube absorber [J]. Experimental Thermal and Fluid Science, 2017, 81: 466-474. |
16 | Jiang M N, Xu S M, Wu X. Experimental investigation for heat and mass transfer characteristics of R124-DMAC bubble absorption in a vertical tubular absorber [J]. International Journal of Heat and Mass Transfer, 2017, 108: 2198-2210. |
17 | 陈光明, 石玉琦, 洪大良. 一种改进的吸收-压缩混合GAX制冷循环理论性能分析[J]. 中国电机工程学报, 2016, 36(12): 3250-3256. |
Chen G M, Shi Y Q, Hong D L. Performance analysis of a modified novel absorption-compression hybrid GAX cycle [J]. Proceedings of the CSEE, 2016, 36(12): 3250-3256. | |
18 | Xu Y J, Chen G M, Wang Q, et al. Performance study on a low-temperature absorption-compression cascade refrigeration system driven by low-grade heat [J]. Energy Conversion and Management, 2016, 119: 379-388. |
19 | Jiang W X, Du K, Li Y J, et al. Experimental investigation on the influence of high temperature on viscosity, thermal conductivity and absorbance of ammonia-water nanofluids [J]. International Journal of Refrigeration, 2017, 82: 189-198. |
20 | Li Y J, Du K, Hu H T, et al. Experimental investigation on enhancement of ammonia-water falling film generation by adding carbon black nanoparticles [J]. Experimental Thermal and Fluid Science, 2015, 68: 593-600. |
21 | Yang L, Jiang W X, Chen X L, et al. Dynamic characteristics of an environment-friendly refrigerant: ammonia-water based TiO2 nanofluids [J]. International Journal of Refrigeration, 2017, 82: 366-380. |
22 | Yang L, Xu J Y, Du K, et al. Recent developments on viscosity and thermal conductivity of nanofluids [J]. Powder Technology, 2017, 317: 348-369. |
23 | Peters R, Greb O, Korinth C, et al. Vapor-liquid equilibria in the system NH3 + H2O + LiBr (I): Measurements at T = 303—423 K and p = 0.1—1.5 MPa [J]. Journal of Chemical & Engineering Data, 1995, 40(4): 769-774. |
24 | Peters R, Korinth C, Keller J U. Vapor-liquid equilibria in the system NH3 + H2O + LiBr (II): Data correlation [J]. Journal of Chemical & Engineering Data, 1995, 40(4): 775-783. |
25 | Wu T H, Wu Y Y, Yu Z Q, et al. Experimental investigation on an ammonia-water-lithium bromide absorption refrigeration system without solution pump [J]. Energy Conversion and Management, 2011, 52(5): 2314-2319. |
26 | 王永涛, 吴裕远, 禹志强, 等. NH3-H2O-LiBr吸收式制冷机吸收和蒸发性能的试验研究[J]. 西安交通大学学报, 2011, 45(3): 40-43, 116. |
Wang Y T, Wu Y Y, Yu Z Q, et al. Experiment on absorption and evaporation performance of a NH3-H2O-LiBr absorption chiller [J]. Journal of Xi'an Jiaotong University, 2011, 45(3): 40-43, 116. | |
27 | Wu Y Y, Chen Y, Wu T H. Experimental researches on characteristics of vapor-liquid equilibrium of NH3-H2O-LiBr system [J]. International Journal of Refrigeration, 2006, 29(2): 328-335. |
28 | Yuan H, Zhang J, Huang X K, et al. Experimental investigation on binary ammonia-water and ternary ammonia-water-lithium bromide mixture-based absorption refrigeration systems for fishing ships [J]. Energy Conversion and Management, 2018, 166: 13-22. |
29 | Liang Y Y, Li S H, Yue X Y, et al. Analysis of NH3-H2O-LiBr absorption refrigeration integrated with an electrodialysis device [J]. Applied Thermal Engineering, 2017, 115: 134-140. |
30 | Yue X Y, Li S H, Xu M K, et al. Experimental study of ternary NH3-H2O-LiBr absorption cycle combined with membrane separation technique [J]. Sustainable Cities and Society, 2018, 40: 728-734. |
31 | 孙淑娟, 杜垲. 氨精馏纯度对氨水吸收式制冷系统性能的影响分析[J]. 制冷技术, 2018, 38(2): 11-15. |
Sun S J, Du K. Analysis on effect of ammonia distillation concentration on performance of ammonia-water absorption refrigeration system [J]. Chinese Journal of Refrigeration Technology, 2018, 38(2): 11-15. | |
32 | 刘腾, 杜垲, 鲁洁明, 等. 氨水吸收式制冷系统中精馏塔性能模拟与分析[J]. 制冷技术, 2016, 36(4): 1-7. |
Liu T, Du K, Lu J M, et al. Simulation and analysis of characteristics of distillation column in ammonia-water absorption refrigeration systems [J]. Chinese Journal of Refrigeration Technology, 2016, 36(4): 1-7. | |
33 | 郭庆堂. 实用制冷工程设计手册[M]. 北京: 中国建筑工业出版社, 1994. |
Guo Q T. Practical Refrigeration Engineering Design Manual [M]. Beijing: China Architecture & Building Press, 1994. | |
34 | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(3): 3-17. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[3] | 吴曦, 区祖迪, 张鑫杰, 徐士鸣, 朱晓静. HFO-1243zf爆燃特性实验研究[J]. 化工学报, 2023, 74(S1): 346-352. |
[4] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[5] | 高润淼, 宋孟杰, 高恩元, 张龙, 张旋, 邵苛苛, 甄泽康, 江正勇. 冷链装备制冷剂相关温室气体减排研究进展[J]. 化工学报, 2023, 74(S1): 1-7. |
[6] | 谈莹莹, 刘晓庆, 王林, 黄鲤生, 李修真, 王占伟. R1150/R600a自复叠制冷循环开机动态特性实验研究[J]. 化工学报, 2023, 74(S1): 213-222. |
[7] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[8] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[9] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[10] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[11] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[12] | 杨灿, 孙雪琦, 尚明华, 张建, 张香平, 曾少娟. 相变离子液体体系吸收分离CO2的研究现状及展望[J]. 化工学报, 2023, 74(4): 1419-1432. |
[13] | 李木金, 胡松, 施德磐, 赵鹏, 高瑞, 李进龙. 环氧丁烷尾气溶剂吸收及精制工艺[J]. 化工学报, 2023, 74(4): 1607-1618. |
[14] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[15] | 周培旭, 李亚伦, 叶恭然, 庄园, 吴曦蕾, 郭智恺, 韩晓红. 有限空间内工质物性对制冷剂泄漏扩散特性的影响[J]. 化工学报, 2023, 74(2): 953-967. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 153
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 510
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||