化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 70-76.doi: 10.11949/0438-1157.20201548

• 流体力学与传递现象 • 上一篇    下一篇

基于LiCl溶液太阳能界面蒸发的连续式空气取水

安美燕(),王洁冰,徐震原(),王如竹   

  1. 上海交通大学制冷与低温工程研究所,上海 200240
  • 收稿日期:2020-11-02 修回日期:2021-01-12 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 徐震原 E-mail:cherry1996ann@163.com;xuzhy@sjtu.edu.cn
  • 作者简介:安美燕(1996—),女,硕士研究生,cherry1996ann@163.com
  • 基金资助:
    国家自然科学基金项目(51976123)

Continuous atmospheric water harvester based on solar interfacial evaporation of LiCl solution

AN Meiyan(),WANG Jiebing,XU Zhenyuan(),WANG Ruzhu   

  1. Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2020-11-02 Revised:2021-01-12 Published:2021-06-20 Online:2021-06-20
  • Contact: XU Zhenyuan E-mail:cherry1996ann@163.com;xuzhy@sjtu.edu.cn

摘要:

太阳能吸收式空气取水利用广泛存在的太阳能和空气获取淡水,是解决淡水短缺的有效方法,然而传统技术的水分吸收和解吸收集需要分开运行,效率较低且需要人工操作。为解决该问题,提出基于吸湿盐溶液太阳能界面蒸发的连续式空气取水,一方面采用LiCl溶液吸收空气中的水分,另一方面利用太阳能界面蒸发实现溶液解吸与水蒸气冷凝收集,由于太阳能界面蒸发可以实现局部加热与解吸,吸收和解吸两个过程可以同时进行。进一步对LiCl溶液的太阳能界面蒸发与连续空气取水分别进行了试验研究,试验结果显示:质量分数为30%的LiCl溶液可以进行高效的吸收/解吸工作,在一个太阳光照强度下达到0.44 kg/(m2·h)的蒸发速率和39.3%的能量效率,并能实现连续太阳能空气取水,取水速率达到2 L/(m2·d)。

关键词: 空气取水, 吸收, 界面, 解吸, 连续

Abstract:

Atmospheric water harvester based solar sorption technology uses widespread solar energy and air to obtain fresh water, which is an effective method to solve the shortage of fresh water. However, the traditional technology of water absorption and desorption sets need to be operated separately, which is inefficient and requires manual operation. To solve this problem, this paper proposes continuous atmospheric water harvester based on solar interfacial evaporation of hygroscopic salt solution. On the one hand, LiCl solution is used to absorb moisture in the air. On the other hand, solar interfacial evaporation is used to achieve solution desorption and water vapor condensation collection. Interfacial evaporation can achieve local heating and desorption, and the two processes of absorption and desorption can be performed simultaneously. In this paper, the solar interfacial evaporation of LiCl solution and continuous atmospheric water harvester were separately studied. The experimental results show that LiCl solution with a mass fraction of 30% can perform efficient absorption/desorption work, and can achieve an evaporation rate of 0.44 kg/(m2·h) and an efficiency of 39.3% under one solar light intensity. The device can achieve continuous solar atmospheric water harvest, and the water intake rate reaches 2 L/(m2·d).

Key words: atmospheric water harvester, absorption, interface, desorption, continuous

中图分类号: 

  • TK 519

图1

太阳能吸收式连续空气取水原理"

图2

炭黑溶液及其吸光表面"

图3

蒸发试验总装置"

图4

蒸发试验装置"

图5

不同LiCl溶液质量分数下装置总质量和蒸发速率随时间变化的曲线"

图6

不同LiCl质量分数下蒸发表面平均温度随时间变化的曲线"

图7

太阳能吸收式连续空气取水试验装置"

图8

太阳能吸收式连续空气取水装置总质量随时间变化"

图9

冷凝水收集情况"

1 王雯雯, 葛天舒, 代彦军, 等. 太阳能吸附式空气取水研究现状[J]. 太阳能, 2020, (1): 33-46.
Wang W W, Ge T S, Dai Y J, et al. Status of solar-driven sorption-based atmosphere water harvesting [J]. Solar Energy, 2020, (1): 33-46.
2 Mekonnen M M, Hoekstra A Y. Four billion people facing severe water scarcity [J]. Science Advances, 2016, 2(2): e1500323.
3 刘子贤, 尹智超, 张博. 太阳能空气取水/制水技术浅析[J]. 太阳能, 2018, (12): 68-70, 44.
Liu Z X, Yin Z C, Zhang B. An analysis on solar water intake/water production technology [J]. Solar Energy, 2018, (12): 68-70, 44.
4 李强, 郝秀渊. 空气取水技术研究综述[J]. 山西建筑, 2016, 42(31): 124-126.
Li Q, Hao X Y. A review on extracting water from air [J]. Shanxi Architecture, 2016, 42(31): 124-126.
5 Rajvanshi A K. Large scale dew collection as a source of fresh water supply [J]. Desalination, 1981, 36(3): 299-306.
6 叶继涛, 陈儿同, 贺运红, 等. 太阳能半导体制冷结露法空气取水器取水率的数值模拟[J]. 上海理工大学学报, 2003, 25(1): 32-35.
Ye J T, Chen E T, He Y H, et al. Numerical simulation for water collection rate of solar-energy semiconductor refrigeration dew fall-based water collector from air [J]. Journal of University of Shanghai for Science and Technology, 2003, 25(1): 32-35.
7 Schemenauer R S, Cereceda P. The quality of fog water collected for domestic and agricultural use in Chile [J]. Journal of Applied Meteorology, 1992, 31(3): 275-290.
8 Ji J G, Wang R Z, Li L X. New composite adsorbent for solar-driven fresh water production from the atmosphere [J]. Desalination, 2007, 212(1/2/3): 176-182.
9 Wang J Y, Wang R Z, Tu Y D, et al. Universal scalable sorption-based atmosphere water harvesting [J]. Energy, 2018, 165: 387-395.
10 赵惠忠, 葛晓洁, 贾少龙, 等. 基于太阳能空气取水5A分子筛开式吸附性能环境参数影响研究[J]. 可再生能源, 2018, 36(4): 512-518.
Zhao H Z, Ge X J, Jia S L, et al. Study on the influence of environmental parameters on the opening adsorption performance of 5A zeolite based on solar water extraction from air [J]. Renewable Energy Resources, 2018, 36(4): 512-518.
11 Balköse D, Ulutan S, Çakıcıoğlu Özkan F, et al. Dynamics of water vapor adsorption on humidity-indicating silica gel [J]. Applied Surface Science, 1998, 134(1/2/3/4): 39-46.
12 Yu N, Wang R Z, Lu Z S, et al. Development and characterization of silica gel-LiCl composite sorbents for thermal energy storage [J]. Chemical Engineering Science, 2014, 111: 73-84.
13 Bui D T, Nida A, Ng K C, et al. Water vapor permeation and dehumidification performance of poly(vinyl alcohol)/lithium chloride composite membranes [J]. Journal of Membrane Science, 2016, 498: 254-262.
14 Aristov Y I, Tokarev M M, Cacciola G, et al. Selective water sorbents for multiple applications (I): CaCl2 confined in mesopores of silica gel: sorption properties [J]. Reaction Kinetics and Catalysis Letters, 1996, 59(2): 325-333.
15 Gordeeva L G, Restuccia G, Cacciola G, et al. Selective water sorbents for multiple applications (V): LiBr confined in mesopores of silica gel: sorption properties [J]. Reaction Kinetics and Catalysis Letters, 1998, 63(1): 81-88.
16 Zheng X, Ge T S, Wang R Z. Recent progress on desiccant materials for solid desiccant cooling systems [J]. Energy, 2014, 74: 280-294.
17 Bon V, Senkovska I, Baburin I A, et al. Zr- and Hf-based metal-organic frameworks: tracking down the polymorphism [J]. Crystal Growth & Design, 2013, 13(3): 1231-1237.
18 Tao P, Ni G, Song C Y, et al. Solar-driven interfacial evaporation [J]. Nature Energy, 2018, 3(12): 1031-1041.
19 Yang Y, Zhao R Q, Zhang T F, et al. Graphene-based standalone solar energy converter for water desalination and purification [J]. ACS Nano, 2018, 12(1): 829-835.
20 Ren H Y, Tang M, Guan B L, et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion [J]. Advanced Materials, 2017, 29(38): 1702590.
21 Zhang P P, Li J, Lv L, et al. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water [J]. ACS Nano, 2017, 11(5): 5087-5093.
22 Hau N T, Chen S S, Nguyen N C, et al. Exploration of EDTA sodium salt as novel draw solution in forward osmosis process for dewatering of high nutrient sludge [J]. Journal of Membrane Science, 2014, 455: 305-311.
23 Ni G, Zandavi S H, Javid S M, et al. A salt-rejecting floating solar still for low-cost desalination [J]. Energy & Environmental Science, 2018, 11(6): 1510-1519.
24 侴乔力, 卢军, 马春青. 一种改进的太阳能吸附式空气取水器[J]. 太阳能学报, 2005, 26(5): 728-731.
Chou Q L, Lu J, Ma C Q. An advanced equipment to fetch water from air with adsorbent by solar energy [J]. Acta Energiae Solaris Sinica, 2005, 26(5): 728-731.
25 姜海凤, 侯立安, 张林. 空气取水非常规技术及材料、装备研究进展[J]. 高校化学工程学报, 2018, 32(1): 1-7.
Jiang H F, Hou L A, Zhang L. Review on unconventional techniques, materials and equipment for water extraction from air [J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(1): 1-7.
26 Zhao X, Peng L M, Tang C Y, et al. All-weather-available, continuous steam generation based on the synergistic photo-thermal and electro-thermal conversion by MXene-based aerogels [J]. Materials Horizons, 2020, 7(3): 855-865.
27 Zhang C, Xiao P, Ni F, et al. Programmable interface asymmetric integration of carbon nanotubes and gold nanoparticles toward flexible, configurable, and surface-enhanced Raman scattering active all-in-one solar-driven evaporators [J]. Energy Technology, 2019, 7(11): 1900787.
28 Meng S, Zhao X, Tang C Y, et al. A bridge-arched and layer-structured hollow melamine foam/reduced graphene oxide composite with an enlarged evaporation area and superior thermal insulation for high-performance solar steam generation [J]. Journal of Materials Chemistry A, 2020, 8(5): 2701-2711.
29 Ge T S, Dai Y J, Wang R Z. Performance study of silica gel coated fin-tube heat exchanger cooling system based on a developed mathematical model [J]. Energy Conversion and Management, 2011, 52(6): 2329-2338.
30 李玉茜. 氯化锂水溶液表面蒸气压的试验研究[D]. 杭州: 浙江大学, 2013.
Li Y X. Experimental study on the vapor pressure over lithium chloride aqueous solution [D]. Hangzhou: Zhejiang University, 2013.
31 Wang X Y, Li X Q, Liu G L, et al. An interfacial solar heating assisted liquid sorbent atmospheric water generator [J]. Angewandte Chemie, 2019, 131(35): 12182-12186.
[1] 王姝焱, 张瑞阳, 刘润, 刘凯, 周莹. Mn(BO22/BNO界面结构调控增强催化臭氧分解性能研究[J]. 化工学报, 2022, 73(7): 3193-3201.
[2] 李文涛, 林慧娟, 钟海. 原位构建富氟SEI的凝胶电解质用于金属锂二次电池[J]. 化工学报, 2022, 73(7): 3240-3250.
[3] 蔡楚玥, 方晓明, 张正国, 凌子夜. CNTs阵列增强石蜡/硅橡胶复合相变垫片的散热性能研究[J]. 化工学报, 2022, 73(7): 2874-2884.
[4] 李雯, 兰忠, 强伟丽, 任文芝, 杜宾港, 马学虎. 蒸汽冷凝近壁过渡区团簇演化特性[J]. 化工学报, 2022, 73(7): 2865-2873.
[5] 于喆淼, 王志, 生梦龙, 邢广宇, 王纪孝. 界面聚合法制备用于脱氮提纯CH4的N2优先渗透ZIF-90/聚酰胺混合基质膜[J]. 化工学报, 2022, 73(7): 3273-3286.
[6] 曹健, 叶南南, 蒋管聪, 覃瑶, 王士博, 朱家华, 陆小华. 基于微量热法对多孔碳与双氧水相互作用过程的传质阻力分析[J]. 化工学报, 2022, 73(6): 2543-2551.
[7] 曾欣欣, 白慧娟, 俞娟, 黄培, 杨超, 徐俊波. 面向空天动力用聚酰亚胺树脂基复合材料介尺度结构与调控[J]. 化工学报, 2022, 73(6): 2352-2369.
[8] 胡华坤, 薛文东, 霍思达, 李勇, 蒋朋. 锂离子电池电解液SEI成膜添加剂的研究进展[J]. 化工学报, 2022, 73(4): 1436-1454.
[9] 李春晖, 何辉, 何明键, 张萌, 高杨, 矫彩山. 离子液体萃取硝酸中Ce(Ⅳ)的动力学研究[J]. 化工学报, 2022, 73(4): 1606-1614.
[10] 张逸伟, 唐海荣, 何勇, 朱燕群, 王智化. 臭氧低温氧化烟气脱硝过程中的氮平衡试验研究[J]. 化工学报, 2022, 73(4): 1732-1742.
[11] 姜焱龙, 张妮, 李淡然, 朱冰冰, 蒋怡晨, 陈海军, 朱跃钊. 基于COSMO-RS方法筛选离子液体用于焦油脱除[J]. 化工学报, 2022, 73(4): 1704-1713.
[12] 王瑞, 任瑛, 陈卫, 韩永生. 冰水界面动态结构的分子动力学模拟研究[J]. 化工学报, 2022, 73(3): 1315-1323.
[13] 张瑾渊, 徐娜, 贺文云, 吕耀东, 刘子璐, 张兴芳. 消防用PEO/OTAC/NaSal减阻体系的介观分子动力学分析[J]. 化工学报, 2022, 73(3): 1157-1165.
[14] 杨振, 姚元鹏, 李昀, 吴慧英. 表面活性剂对水过冷池沸腾特性影响实验研究[J]. 化工学报, 2022, 73(3): 1093-1101.
[15] 兰文杰, 胡晓洁, 蔡迪宗. 界面探针法测量液滴与固体壁面间相互作用力[J]. 化工学报, 2022, 73(3): 1119-1126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!