1 |
王雯雯, 葛天舒, 代彦军, 等. 太阳能吸附式空气取水研究现状[J]. 太阳能, 2020, (1): 33-46.
|
|
Wang W W, Ge T S, Dai Y J, et al. Status of solar-driven sorption-based atmosphere water harvesting [J]. Solar Energy, 2020, (1): 33-46.
|
2 |
Mekonnen M M, Hoekstra A Y. Four billion people facing severe water scarcity [J]. Science Advances, 2016, 2(2): e1500323.
|
3 |
刘子贤, 尹智超, 张博. 太阳能空气取水/制水技术浅析[J]. 太阳能, 2018, (12): 68-70, 44.
|
|
Liu Z X, Yin Z C, Zhang B. An analysis on solar water intake/water production technology [J]. Solar Energy, 2018, (12): 68-70, 44.
|
4 |
李强, 郝秀渊. 空气取水技术研究综述[J]. 山西建筑, 2016, 42(31): 124-126.
|
|
Li Q, Hao X Y. A review on extracting water from air [J]. Shanxi Architecture, 2016, 42(31): 124-126.
|
5 |
Rajvanshi A K. Large scale dew collection as a source of fresh water supply [J]. Desalination, 1981, 36(3): 299-306.
|
6 |
叶继涛, 陈儿同, 贺运红, 等. 太阳能半导体制冷结露法空气取水器取水率的数值模拟[J]. 上海理工大学学报, 2003, 25(1): 32-35.
|
|
Ye J T, Chen E T, He Y H, et al. Numerical simulation for water collection rate of solar-energy semiconductor refrigeration dew fall-based water collector from air [J]. Journal of University of Shanghai for Science and Technology, 2003, 25(1): 32-35.
|
7 |
Schemenauer R S, Cereceda P. The quality of fog water collected for domestic and agricultural use in Chile [J]. Journal of Applied Meteorology, 1992, 31(3): 275-290.
|
8 |
Ji J G, Wang R Z, Li L X. New composite adsorbent for solar-driven fresh water production from the atmosphere [J]. Desalination, 2007, 212(1/2/3): 176-182.
|
9 |
Wang J Y, Wang R Z, Tu Y D, et al. Universal scalable sorption-based atmosphere water harvesting [J]. Energy, 2018, 165: 387-395.
|
10 |
赵惠忠, 葛晓洁, 贾少龙, 等. 基于太阳能空气取水5A分子筛开式吸附性能环境参数影响研究[J]. 可再生能源, 2018, 36(4): 512-518.
|
|
Zhao H Z, Ge X J, Jia S L, et al. Study on the influence of environmental parameters on the opening adsorption performance of 5A zeolite based on solar water extraction from air [J]. Renewable Energy Resources, 2018, 36(4): 512-518.
|
11 |
Balköse D, Ulutan S, Çakıcıoğlu Özkan F, et al. Dynamics of water vapor adsorption on humidity-indicating silica gel [J]. Applied Surface Science, 1998, 134(1/2/3/4): 39-46.
|
12 |
Yu N, Wang R Z, Lu Z S, et al. Development and characterization of silica gel-LiCl composite sorbents for thermal energy storage [J]. Chemical Engineering Science, 2014, 111: 73-84.
|
13 |
Bui D T, Nida A, Ng K C, et al. Water vapor permeation and dehumidification performance of poly(vinyl alcohol)/lithium chloride composite membranes [J]. Journal of Membrane Science, 2016, 498: 254-262.
|
14 |
Aristov Y I, Tokarev M M, Cacciola G, et al. Selective water sorbents for multiple applications (I): CaCl2 confined in mesopores of silica gel: sorption properties [J]. Reaction Kinetics and Catalysis Letters, 1996, 59(2): 325-333.
|
15 |
Gordeeva L G, Restuccia G, Cacciola G, et al. Selective water sorbents for multiple applications (V): LiBr confined in mesopores of silica gel: sorption properties [J]. Reaction Kinetics and Catalysis Letters, 1998, 63(1): 81-88.
|
16 |
Zheng X, Ge T S, Wang R Z. Recent progress on desiccant materials for solid desiccant cooling systems [J]. Energy, 2014, 74: 280-294.
|
17 |
Bon V, Senkovska I, Baburin I A, et al. Zr- and Hf-based metal-organic frameworks: tracking down the polymorphism [J]. Crystal Growth & Design, 2013, 13(3): 1231-1237.
|
18 |
Tao P, Ni G, Song C Y, et al. Solar-driven interfacial evaporation [J]. Nature Energy, 2018, 3(12): 1031-1041.
|
19 |
Yang Y, Zhao R Q, Zhang T F, et al. Graphene-based standalone solar energy converter for water desalination and purification [J]. ACS Nano, 2018, 12(1): 829-835.
|
20 |
Ren H Y, Tang M, Guan B L, et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion [J]. Advanced Materials, 2017, 29(38): 1702590.
|
21 |
Zhang P P, Li J, Lv L, et al. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water [J]. ACS Nano, 2017, 11(5): 5087-5093.
|
22 |
Hau N T, Chen S S, Nguyen N C, et al. Exploration of EDTA sodium salt as novel draw solution in forward osmosis process for dewatering of high nutrient sludge [J]. Journal of Membrane Science, 2014, 455: 305-311.
|
23 |
Ni G, Zandavi S H, Javid S M, et al. A salt-rejecting floating solar still for low-cost desalination [J]. Energy & Environmental Science, 2018, 11(6): 1510-1519.
|
24 |
侴乔力, 卢军, 马春青. 一种改进的太阳能吸附式空气取水器[J]. 太阳能学报, 2005, 26(5): 728-731.
|
|
Chou Q L, Lu J, Ma C Q. An advanced equipment to fetch water from air with adsorbent by solar energy [J]. Acta Energiae Solaris Sinica, 2005, 26(5): 728-731.
|
25 |
姜海凤, 侯立安, 张林. 空气取水非常规技术及材料、装备研究进展[J]. 高校化学工程学报, 2018, 32(1): 1-7.
|
|
Jiang H F, Hou L A, Zhang L. Review on unconventional techniques, materials and equipment for water extraction from air [J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(1): 1-7.
|
26 |
Zhao X, Peng L M, Tang C Y, et al. All-weather-available, continuous steam generation based on the synergistic photo-thermal and electro-thermal conversion by MXene-based aerogels [J]. Materials Horizons, 2020, 7(3): 855-865.
|
27 |
Zhang C, Xiao P, Ni F, et al. Programmable interface asymmetric integration of carbon nanotubes and gold nanoparticles toward flexible, configurable, and surface-enhanced Raman scattering active all-in-one solar-driven evaporators [J]. Energy Technology, 2019, 7(11): 1900787.
|
28 |
Meng S, Zhao X, Tang C Y, et al. A bridge-arched and layer-structured hollow melamine foam/reduced graphene oxide composite with an enlarged evaporation area and superior thermal insulation for high-performance solar steam generation [J]. Journal of Materials Chemistry A, 2020, 8(5): 2701-2711.
|
29 |
Ge T S, Dai Y J, Wang R Z. Performance study of silica gel coated fin-tube heat exchanger cooling system based on a developed mathematical model [J]. Energy Conversion and Management, 2011, 52(6): 2329-2338.
|
30 |
李玉茜. 氯化锂水溶液表面蒸气压的试验研究[D]. 杭州: 浙江大学, 2013.
|
|
Li Y X. Experimental study on the vapor pressure over lithium chloride aqueous solution [D]. Hangzhou: Zhejiang University, 2013.
|
31 |
Wang X Y, Li X Q, Liu G L, et al. An interfacial solar heating assisted liquid sorbent atmospheric water generator [J]. Angewandte Chemie, 2019, 131(35): 12182-12186.
|