化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 70-76.DOI: 10.11949/0438-1157.20201548
收稿日期:
2020-11-02
修回日期:
2021-01-12
出版日期:
2021-06-20
发布日期:
2021-06-20
通讯作者:
徐震原
作者简介:
安美燕(1996—),女,硕士研究生,基金资助:
AN Meiyan(),WANG Jiebing,XU Zhenyuan(),WANG Ruzhu
Received:
2020-11-02
Revised:
2021-01-12
Online:
2021-06-20
Published:
2021-06-20
Contact:
XU Zhenyuan
摘要:
太阳能吸收式空气取水利用广泛存在的太阳能和空气获取淡水,是解决淡水短缺的有效方法,然而传统技术的水分吸收和解吸收集需要分开运行,效率较低且需要人工操作。为解决该问题,提出基于吸湿盐溶液太阳能界面蒸发的连续式空气取水,一方面采用LiCl溶液吸收空气中的水分,另一方面利用太阳能界面蒸发实现溶液解吸与水蒸气冷凝收集,由于太阳能界面蒸发可以实现局部加热与解吸,吸收和解吸两个过程可以同时进行。进一步对LiCl溶液的太阳能界面蒸发与连续空气取水分别进行了试验研究,试验结果显示:质量分数为30%的LiCl溶液可以进行高效的吸收/解吸工作,在一个太阳光照强度下达到0.44 kg/(m2·h)的蒸发速率和39.3%的能量效率,并能实现连续太阳能空气取水,取水速率达到2 L/(m2·d)。
中图分类号:
安美燕, 王洁冰, 徐震原, 王如竹. 基于LiCl溶液太阳能界面蒸发的连续式空气取水[J]. 化工学报, 2021, 72(S1): 70-76.
AN Meiyan, WANG Jiebing, XU Zhenyuan, WANG Ruzhu. Continuous atmospheric water harvester based on solar interfacial evaporation of LiCl solution[J]. CIESC Journal, 2021, 72(S1): 70-76.
图5 不同LiCl溶液质量分数下装置总质量和蒸发速率随时间变化的曲线
Fig.5 Graph of total mass of device and evaporation rate versus time under different mass fractions of LiCl solution
1 | 王雯雯, 葛天舒, 代彦军, 等. 太阳能吸附式空气取水研究现状[J]. 太阳能, 2020, (1): 33-46. |
Wang W W, Ge T S, Dai Y J, et al. Status of solar-driven sorption-based atmosphere water harvesting [J]. Solar Energy, 2020, (1): 33-46. | |
2 | Mekonnen M M, Hoekstra A Y. Four billion people facing severe water scarcity [J]. Science Advances, 2016, 2(2): e1500323. |
3 | 刘子贤, 尹智超, 张博. 太阳能空气取水/制水技术浅析[J]. 太阳能, 2018, (12): 68-70, 44. |
Liu Z X, Yin Z C, Zhang B. An analysis on solar water intake/water production technology [J]. Solar Energy, 2018, (12): 68-70, 44. | |
4 | 李强, 郝秀渊. 空气取水技术研究综述[J]. 山西建筑, 2016, 42(31): 124-126. |
Li Q, Hao X Y. A review on extracting water from air [J]. Shanxi Architecture, 2016, 42(31): 124-126. | |
5 | Rajvanshi A K. Large scale dew collection as a source of fresh water supply [J]. Desalination, 1981, 36(3): 299-306. |
6 | 叶继涛, 陈儿同, 贺运红, 等. 太阳能半导体制冷结露法空气取水器取水率的数值模拟[J]. 上海理工大学学报, 2003, 25(1): 32-35. |
Ye J T, Chen E T, He Y H, et al. Numerical simulation for water collection rate of solar-energy semiconductor refrigeration dew fall-based water collector from air [J]. Journal of University of Shanghai for Science and Technology, 2003, 25(1): 32-35. | |
7 | Schemenauer R S, Cereceda P. The quality of fog water collected for domestic and agricultural use in Chile [J]. Journal of Applied Meteorology, 1992, 31(3): 275-290. |
8 | Ji J G, Wang R Z, Li L X. New composite adsorbent for solar-driven fresh water production from the atmosphere [J]. Desalination, 2007, 212(1/2/3): 176-182. |
9 | Wang J Y, Wang R Z, Tu Y D, et al. Universal scalable sorption-based atmosphere water harvesting [J]. Energy, 2018, 165: 387-395. |
10 | 赵惠忠, 葛晓洁, 贾少龙, 等. 基于太阳能空气取水5A分子筛开式吸附性能环境参数影响研究[J]. 可再生能源, 2018, 36(4): 512-518. |
Zhao H Z, Ge X J, Jia S L, et al. Study on the influence of environmental parameters on the opening adsorption performance of 5A zeolite based on solar water extraction from air [J]. Renewable Energy Resources, 2018, 36(4): 512-518. | |
11 | Balköse D, Ulutan S, Çakıcıoğlu Özkan F, et al. Dynamics of water vapor adsorption on humidity-indicating silica gel [J]. Applied Surface Science, 1998, 134(1/2/3/4): 39-46. |
12 | Yu N, Wang R Z, Lu Z S, et al. Development and characterization of silica gel-LiCl composite sorbents for thermal energy storage [J]. Chemical Engineering Science, 2014, 111: 73-84. |
13 | Bui D T, Nida A, Ng K C, et al. Water vapor permeation and dehumidification performance of poly(vinyl alcohol)/lithium chloride composite membranes [J]. Journal of Membrane Science, 2016, 498: 254-262. |
14 | Aristov Y I, Tokarev M M, Cacciola G, et al. Selective water sorbents for multiple applications (I): CaCl2 confined in mesopores of silica gel: sorption properties [J]. Reaction Kinetics and Catalysis Letters, 1996, 59(2): 325-333. |
15 | Gordeeva L G, Restuccia G, Cacciola G, et al. Selective water sorbents for multiple applications (V): LiBr confined in mesopores of silica gel: sorption properties [J]. Reaction Kinetics and Catalysis Letters, 1998, 63(1): 81-88. |
16 | Zheng X, Ge T S, Wang R Z. Recent progress on desiccant materials for solid desiccant cooling systems [J]. Energy, 2014, 74: 280-294. |
17 | Bon V, Senkovska I, Baburin I A, et al. Zr- and Hf-based metal-organic frameworks: tracking down the polymorphism [J]. Crystal Growth & Design, 2013, 13(3): 1231-1237. |
18 | Tao P, Ni G, Song C Y, et al. Solar-driven interfacial evaporation [J]. Nature Energy, 2018, 3(12): 1031-1041. |
19 | Yang Y, Zhao R Q, Zhang T F, et al. Graphene-based standalone solar energy converter for water desalination and purification [J]. ACS Nano, 2018, 12(1): 829-835. |
20 | Ren H Y, Tang M, Guan B L, et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion [J]. Advanced Materials, 2017, 29(38): 1702590. |
21 | Zhang P P, Li J, Lv L, et al. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water [J]. ACS Nano, 2017, 11(5): 5087-5093. |
22 | Hau N T, Chen S S, Nguyen N C, et al. Exploration of EDTA sodium salt as novel draw solution in forward osmosis process for dewatering of high nutrient sludge [J]. Journal of Membrane Science, 2014, 455: 305-311. |
23 | Ni G, Zandavi S H, Javid S M, et al. A salt-rejecting floating solar still for low-cost desalination [J]. Energy & Environmental Science, 2018, 11(6): 1510-1519. |
24 | 侴乔力, 卢军, 马春青. 一种改进的太阳能吸附式空气取水器[J]. 太阳能学报, 2005, 26(5): 728-731. |
Chou Q L, Lu J, Ma C Q. An advanced equipment to fetch water from air with adsorbent by solar energy [J]. Acta Energiae Solaris Sinica, 2005, 26(5): 728-731. | |
25 | 姜海凤, 侯立安, 张林. 空气取水非常规技术及材料、装备研究进展[J]. 高校化学工程学报, 2018, 32(1): 1-7. |
Jiang H F, Hou L A, Zhang L. Review on unconventional techniques, materials and equipment for water extraction from air [J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(1): 1-7. | |
26 | Zhao X, Peng L M, Tang C Y, et al. All-weather-available, continuous steam generation based on the synergistic photo-thermal and electro-thermal conversion by MXene-based aerogels [J]. Materials Horizons, 2020, 7(3): 855-865. |
27 | Zhang C, Xiao P, Ni F, et al. Programmable interface asymmetric integration of carbon nanotubes and gold nanoparticles toward flexible, configurable, and surface-enhanced Raman scattering active all-in-one solar-driven evaporators [J]. Energy Technology, 2019, 7(11): 1900787. |
28 | Meng S, Zhao X, Tang C Y, et al. A bridge-arched and layer-structured hollow melamine foam/reduced graphene oxide composite with an enlarged evaporation area and superior thermal insulation for high-performance solar steam generation [J]. Journal of Materials Chemistry A, 2020, 8(5): 2701-2711. |
29 | Ge T S, Dai Y J, Wang R Z. Performance study of silica gel coated fin-tube heat exchanger cooling system based on a developed mathematical model [J]. Energy Conversion and Management, 2011, 52(6): 2329-2338. |
30 | 李玉茜. 氯化锂水溶液表面蒸气压的试验研究[D]. 杭州: 浙江大学, 2013. |
Li Y X. Experimental study on the vapor pressure over lithium chloride aqueous solution [D]. Hangzhou: Zhejiang University, 2013. | |
31 | Wang X Y, Li X Q, Liu G L, et al. An interfacial solar heating assisted liquid sorbent atmospheric water generator [J]. Angewandte Chemie, 2019, 131(35): 12182-12186. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[3] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[4] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[5] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[6] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[7] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[8] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[9] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[10] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[11] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[12] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[13] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[14] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[15] | 尹驰, 张正国, 凌子夜, 方晓明. 含石蜡@二氧化硅纳米胶囊和碳纤维的相变热界面材料及其散热性能[J]. 化工学报, 2023, 74(4): 1795-1804. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 741
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 510
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||