化工学报 ›› 2021, Vol. 72 ›› Issue (6): 3063-3073.doi: 10.11949/0438-1157.20201732

• 青海盐湖资源综合利用专栏 • 上一篇    下一篇

新型calix[4]biscrown超分子识别材料制备及其吸附铷和铯性能研究

侯林怡(),王一宁,张安运(),苏佳天   

  1. 浙江大学化学工程与生物工程学院,浙江 杭州 310027
  • 收稿日期:2020-12-01 修回日期:2021-03-16 出版日期:2021-06-05 发布日期:2021-06-05
  • 通讯作者: 张安运 E-mail:21828037@zju.edu.cn;zhangay@zju.edu.cn
  • 作者简介:侯林怡(1996—),女,硕士,21828037@zju.edu.cn
  • 基金资助:
    国家自然科学基金项目(U1407115)

Preparation of new calix[4]biscrown supramolecular recognition materials for the adsorption of rubidium and cesium

HOU Linyi(),WANG Yining,ZHANG Anyun(),SU Jiatian   

  1. College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2020-12-01 Revised:2021-03-16 Published:2021-06-05 Online:2021-06-05
  • Contact: ZHANG Anyun E-mail:21828037@zju.edu.cn;zhangay@zju.edu.cn

摘要:

稀有金属铷和铯是重要战略资源,盐湖卤水中含有一定量铷和铯。因其组成与碱性介质的复杂性,铷铯的分离与回收极富挑战性,尚未有效解决。本文基于固定化与真空活化灌注技术将超分子衍生物杯[4]双冠6(BC6)和杯[4]双冠5(BC5)负载于高分子介孔载体XAD-7孔道中,制备与表征了新型超分子识别材料BC6/XAD-7和BC5/XAD-7。研究了水相pH和温度变化对BC6/XAD-7和BC5/XAD-7吸附典型碱金属和碱土金属离子性能的影响,考察了BC6/XAD-7和BC5/XAD-7随接触时间变化吸附铷和铯动力学行为,获得了最佳吸附条件,明确了提取钾后余液中以超分子识别材料吸附分离铯和铷的技术可行性,提出了有效吸附分离铯和铷的CREC技术流程,为应用新型超分子识别材料于盐湖卤水中吸附分离铯和铷提供理论与实验依据。

关键词: 超分子材料, 吸附, 盐湖卤水, 铷,

Abstract:

Rb and Cs are important strategic resources. The effective separation of Rb and Cs from brine has been challenging work that has not been solved due to the complexity of the compositions in alkaline medium. For this purpose, a new supramolecular material BC6/XAD-7 or BC5/XAD-7 was prepared and characterized by vacuum impregnating and immobilizing BC6 or BC5 into the pores of mesoporous XAD-7 carrier. The adsorption of Rb, Cs and other typical metals on BC6/XAD-7 or BC5/XAD-7 was investigated by examining the influence of pH in aqueous phase and temperature. The adsorption kinetics of Rb and Cs onto BC6/XAD-7 and BC5/XAD-7 with the change of contact time was studied. The optimum adsorption conditions were obtained. The technical feasibility of the adsorption of Cs and Rb by the materials from a solution after K removal was confirmed. A technical process entitled CREC was proposed. It provides theoretical and experimental basis for the application of new supramolecular recognition materials in the adsorption and separation of cesium and rubidium in salt lake brine.

Key words: supramolecular material, adsorption, brine, rubidium, cesium

中图分类号: 

  • TQ 028.8

图1

BC6和BC5合成技术路线"

图2

calix[4]biscrown衍生物的分子结构"

图3

BC6、BC5、XAD-7、BC6/XAD-7和BC5/XAD-7的SEM图"

图4

BC6、BC5、XAD-7、BC6/XAD-7和BC5/XAD-7的XRD谱图"

图5

BC6/XAD-7、BC5/XAD-7和XAD-7于77 K条件下的N2吸附-脱附曲线和孔径分布"

表1

XAD-7、BC6/XAD-7和BC5/XAD-7的比表面积、孔径及孔体积"

样品比表面积/(m2/g)最可几孔径/nm孔体积/(cm3/g)
XAD-7348.539.480.70
BC6/XAD-7204.931.220.64
BC5/XAD-7188.7831.180.67

图6

BC6、XAD-7和BC6/XAD-7的FT-IR谱图"

图7

接触时间对超分子识别材料吸附性能的影响"

图8

pH变化对超分子识别材料吸附性能的影响"

图9

温度变化对超分子识别材料吸附性能的影响"

图10

BC6/XAD-7和BC5/XAD-7吸附性能比较"

图11

超分子识别材料BC6/XAD-7或BC5/XAD-7吸附分离铯和铷的CREC流程"

1 胡开宝, 潘存峰, 张荣. 吉兰泰盐湖资源开采与地质环境问题探讨[J]. 盐业与化工, 2011, 40(1): 49-51.
Hu K B, Pan C F, Zhang R. Jilantai salt lake resource development and discussion on the geological environment[J]. Journal of Salt and Chemical Industry, 2011, 40(1): 49-51.
2 Zhang N, Gao D L, Liu M M, et al. Rubidium and cesium recovery from brine resources[J]. Advanced Materials Research, 2014, 1015: 417-420.
3 孙艳, 王瑞江, 亓锋, 等. 世界铷资源现状及我国铷开发利用建议[J]. 中国矿业, 2013, 22(9): 11-13.
Sun Y, Wang R J, Qi F, et al. The global status of rubidium resource and suggestions on its development and utilization in China[J]. China Mining Magazine, 2013, 22(9): 11-13.
4 孙海霞, 保英莲, 曹红翠, 等. 青海盐湖卤水铷铯资源及分析方法研究进展[J]. 广东化工, 2012, 39(4): 11-12.
Sun H X, Bao Y L, Cao H C, et al. Saline rubidium and cesium resource and research progress of analysis method in Qinghai[J]. Guangdong Chemical Industry, 2012, 39(4): 11-12.
5 马喆, 韩凤清, 易磊, 等. 柴达木盆地昆特依盐湖沉积特征及其盐类资源评价[J]. 盐湖研究, 2020, 28(1): 86-95.
Ma Z, Han F Q, Yi L, et al. Sedimentary characteristics and assessment of salt mineral resources in Kunteyi salt lake, Qaidam basin[J]. Journal of Salt Lake Research, 2020, 28(1): 86-95.
6 马培华. 中国盐湖资源的开发利用与科技问题[J]. 地球科学进展, 2000, 15(4): 365-375.
Ma P H. Comprehensive utilization of salt lake resources[J]. Advance in Earth Sciences, 2000, 15(4): 365-375.
7 Sun Y, Wang Q, Wang Y H, et al. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine[J]. Separation and Purification Technology, 2021, 256: 117807.
8 郑绵平, 张永生, 刘喜方, 等. 中国盐湖科学技术研究的若干进展与展望[J]. 地质学报, 2016, 90(9): 2123-2166.
Zheng M P, Zhang Y S, Liu X F, et al. Progress and prospects of salt lake research in China[J]. Acta Geologica Sinica, 2016, 90(9): 2123-2166.
9 Zheng M P. Resources and eco-environmental protection of salt lakes in China[J]. Environmental Earth Sciences, 2011, 64(6): 1537-1546.
10 乜贞, 卜令忠, 刘建华, 等. 我国盐湖钾盐资源现状及提钾工艺技术进展[J]. 地球学报, 2010, 31(6): 869-874.
Nie Z, Bu L Z, Liu J H, et al. Status of potash resources in salt lakes and progress in potash technologies in China[J]. Acta Geoscientica Sinica, 2010, 31(6): 869-874.
11 李小松. 察尔汗盐湖光卤石矿制备氯化钾工艺过程与工程化研究[D]. 上海: 华东理工大学, 2012.
Li X S. Production of potassium chloride by cold decomposition and recrystallization of carnallite[D]. Shanghai: East China University of Science and Technology, 2012.
12 刘有智, 白梅, 申红艳, 等. 均相沉淀法制备超细氢氧化镁[J]. 无机盐工业, 2012, 44(3): 30-32.
Liu Y Z, Bai M, Shen H Y, et al. Preparation of superfine magnesium hydroxide by homogeneous precipitation method[J]. Inorganic Chemicals Industry, 2012, 44(3): 30-32.
13 张建忠, 徐永杰, 王金晶. 水热法制备氢氧化镁阻燃剂研究[J]. 盐科学与化工, 2018, 47(6): 10-13.
Zhang J Z, Xu Y J, Wang J J. Development of preparation of flame retardant for magnesium hydroxide by hydrothermal method[J]. Journal of Salt Science and Chemical Industry, 2018, 47(6): 10-13.
14 李颖, 董金美, 肖学英, 等. 利用盐湖常见元素的助烧结作用绿色制备氧化镁及磷酸镁水泥[J]. 盐湖研究, 2020, 28(2): 15-25.
Li Y, Dong J M, Xiao X Y, et al. Green preparation of magnesia and magnesium phosphate cement by utilizing common elements in salt lake as sintering aid[J]. Journal of Salt Lake Research, 2020, 28(2): 15-25.
15 李国祥. 氨法生产氢氧化镁和氧化镁的工艺流程分析[J]. 纯碱工业, 2019, (1): 8-12.
Li G X. Process analysis of production of magnesium hydroxide and magnesium oxide by ammonia process[J]. Soda Industry, 2019, (1): 8-12.
16 靳军宝, 白光祖, 田晓阳, 等. 盐湖锂镁分离提取技术国际态势分析[J]. 盐湖研究, 2014, 22(1): 61-67.
Jin J B, Bai G Z, Tian X Y, et al. International patent analysis for separating technique of lithium and magnesium from salt lake brines[J]. Journal of Salt Lake Research, 2014, 22(1): 61-67.
17 孙犁, 黄建成, 叶秀深, 等. 柴达木盆地盐湖卤水中硼的分离提取研究进展[J]. 无机盐工业, 2017, 49(10): 1-5.
Sun L, Huang J C, Ye X S, et al. Research progress in separation and extraction of boron from salt lakes brine of Qaidam basin[J]. Inorganic Chemicals Industry, 2017, 49(10): 1-5.
18 Mosin D N, Marks E A, Burmakin E I, et al. Electroconduction of potassium, rubidium, and cesium orthophosphates[J]. Russian Journal of Electrochemistry, 2001, 37(8): 863-864.
19 Lee J Y, Kim H J, Jung J H, et al. Networking of calixcrowns: from heteronuclear endo/exocyclic coordination polymers to a photoluminescence switch[J]. Journal of the American Chemical Society, 2008, 130(42): 13838-13839.
20 Soukiassian P, Bakshi M H, Hurych Z. Exceptionally large enhancement of InP (110) oxidation rate by cesium catalyst[J]. Journal of Applied Physics, 1987, 61(7): 2679-2681.
21 Durojaiye T, Hayes J, Potassium Goudy A., rubidium and cesium hydrides as dehydrogenation catalysts for the lithium amide/magnesium hydride system[J]. International Journal of Hydrogen Energy, 2015, 40(5): 2266-2273.
22 Lukas R J, Cullen M J. An isotopic rubidium ion efflux assay for the functional characterization of nicotinic acetylcholine receptors on clonal cell lines[J]. Analytical Biochemistry, 1988, 175(1): 212-218.
23 Gao L, Ma G H, Zheng Y X, et al. Research trends on separation and extraction of rare alkali metal from salt lake brine: rubidium and cesium[J]. Solvent Extraction and Ion Exchange, 2020, 38(7): 753-776.
24 Tomar J, Awasthy A, Sharma U. Synthetic ionophores for the separation of Li+,Na+,K+,Ca2+,Mg2+ metal ions using liquid membrane technology[J]. Desalination, 2008, 232(1/2/3): 102-109.
25 Wang J L, Zhuang S T. Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes[J]. Nuclear Engineering and Technology, 2020, 52(2): 328-336.
26 Stoll I, Eberhard J, Brodbeck R, et al. A new fluorescent calix crown ether: synthesis and complex formation with alkali metal ions[J]. Chemistry - A European Journal, 2008, 14(4): 1155-1163.
27 Asfari Z, Böhmer V, Harrowfield J, et al. Calixarenes 2001[M]. Dordrecht: Kluwer Academic Publishers, 2002.
28 Asfari Z, Wenger S, Vicens J. Calixcrowns and related molecules[J]. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 1994, 19(1/2/3/4): 137-148.
29 Ludwig R, Dzung N. Calixarene-based molecules for cation recognition[J]. Sensors, 2002, 2(10): 397-416.
30 Mokhtari B, Pourabdollah K. Binding and extraction of alkali and alkaline earth metals by nano-baskets of calix[4]arene-1,2-crown-3[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 73(1/2/3/4): 269-277.
31 Zhang A Y, Chai Z F. Adsorption property of cesium onto modified macroporous silica-calix[4]arene-crown based supramolecular recognition materials[J]. Industrial & Engineering Chemistry Research, 2012, 51(17): 6196-6204.
32 Riddle C L, Baker J D, Law J D, et al. Fission product extraction (FPEX): development of a novel solvent for the simultaneous separation of strontium and cesium from acidic solutions[J]. Solvent Extraction and Ion Exchange, 2005, 23(3): 449-461.
33 Mincher B J, Mezyk S P, Bauer W F, et al. FPEX γ-radiolysis in the presence of nitric acid[J]. Solvent Extraction and Ion Exchange, 2007, 25(5): 593-601.
34 Walker D D, Norato M A, Campbell S G, et al. Cesium removal from savannah river site radioactive waste using the caustic-side solvent extraction (CSSX) process[J]. Separation Science and Technology, 2005, 40(1/2/3): 297-309.
35 Bonnesen P V, Delmau L H, Moyer B A, et al. A robust alkaline-side CSEX solvent suitable for removing cesium from Savannah river high level waste[J]. Solvent Extraction and Ion Exchange, 2000, 18(6): 1079-1107.
36 Dozol J F, Lamare V, Bressot C, et al. Crown calix[4]arenes, method of preparation and use for selective extraction of caesium: US6156282[P]. 2000-12-05.
37 Dozol J F, Simon N, Lamare V, et al. A solution, for cesium removal from high-salinity acidic or alkaline liquid waste: the crown calix[4]arenes[J]. Separation Science and Technology, 1999, 34(6/7): 877-909.
38 Lamare V, Bressot C, Dozol J F, et al. Selective extraction of cesium at tracer level concentration from a sodium nitrate solution with calix-crowns, molecular modeling study of the Cs+/Na+ selectivity[J]. Separation Science and Technology, 1997, 32(1/2/3/4): 175-191.
39 Hill C, Dozol J F, Lamare V, et al. Nuclear waste treatment by means of supported liquid membranes containing calixcrown compounds[J]. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 1994, 19(1/2/3/4): 399-408.
40 Zhang A Y, Dai Y, Xu L, et al. Extraction behavior of cesium and some typical fission and non-fission products with a new 1, 3-di(1-decyloxy)-2, 4-crown-6-calix[4]arene[J]. Radiochimica Acta, 2014, 102(1/2): 135-142.
41 Ellis R J, Reinhart B, Williams N J, et al. Capping the calix: how toluene completes cesium (Ⅰ) coordination with calix[4]pyrrole[J]. Chemical Communications, 2017, 53(41): 5610-5613.
42 Zhang W W, Zhang A Y, Xu L, et al. Extraction of cesium and some typical metals with a supramolecular recognition agent 1, 3-bis(1-nonyloxy)-2,4-crown-6-calix[4]arene[J]. Journal of Chemical & Engineering Data, 2013, 58(1): 167-175.
43 Mohite B S, Khopkar S M. Solvent extraction separation of rubidium with dicyclohexano-18-crown-6[J]. Talanta, 1985, 32(7): 565-567.
44 Zhang A Y, Hu Q H, Chai Z F. SPEC: a new process for strontium and cesium partitioning utilizing two macroporous silica-based supramolecular recognition agents impregnated polymeric composites[J]. Separation Science and Technology, 2009, 44(9): 2146-2168.
45 Zhang A Y, Li J Y, Dai Y, et al. Development of a new simultaneous separation of cesium and strontium by extraction chromatograph utilization of a hybridized macroporous silica-based functional material[J]. Separation and Purification Technology, 2014, 127: 39-45.
46 Zhang A Y, Zhang W W, Wang Y N, et al. Effective separation of cesium with a new silica-calix[4]biscrown material by extraction chromatography[J]. Separation and Purification Technology, 2016, 171: 17-25.
47 Zhang A Y, Hu Q H, Chai Z F. Chromatographic partitioning of cesium by a macroporous silica-calix[4]arene-crown supramolecular recognition composite[J]. AIChE Journal, 2010, 56(10): 2632-2640.
48 Xiao C L, Zhang A Y, Chai Z F. Synthesis and characterization of novel macroporous silica-polymer-calixcrown hybrid supramolecular recognition materials for effective separation of cesium[J]. Journal of Hazardous Materials, 2014, 267: 109-118.
49 Zhang A Y, Xiao C L, Liu Y H, et al. Preparation of macroporous silica-based crown ether materials for strontium separation[J]. Journal of Porous Materials, 2010, 17(2): 153-161.
50 Zhang A Y, Hu Q H, Chai Z F. Synthesis of a novel macroporous silica-calix[4]arene-crown polymeric composite and its adsorption for alkali metals and alkaline-earth metals[J]. Industrial & Engineering Chemistry Research, 2010, 49(5): 2047-2054.
51 陈春梅. 几种大孔硅基超分子识别材料制备及其吸附铯的基础特性研究[D]. 杭州: 浙江大学, 2011.
Chen C M. Synthesis of a few macroporous silica-based supermolecular recognition materials and their properties adsorption for cesium[D]. Hangzhou: Zhejiang University, 2011.
[1] 黄丽菁, 黄继娇, 李鹏辉, 刘芷诺, 蒋康杰, 吴文娟. 木质素羟丙基磺甲基化改性及其对纤维素酶水解的影响[J]. 化工学报, 2022, 73(7): 3232-3239.
[2] 赵继昊, 唐伟强, 徐小飞, 赵双良, 贺炅皓. 高分子复合材料中键合剂在不同纳米填料表面的吸附能计算[J]. 化工学报, 2022, 73(7): 3174-3181.
[3] 黄陆月, 刘畅, 许勇毅, 邢浩若, 王峰, 马双忱. CDI二维浓度传质模型的建立以及实验验证[J]. 化工学报, 2022, 73(7): 2933-2943.
[4] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[5] 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676.
[6] 张浩, 赵宇, 徐志明, 李晋辉. 羧甲基葡聚糖的快速沉降法阻垢特性研究[J]. 化工学报, 2022, 73(4): 1515-1522.
[7] 刘碧强, 曹海山. 基于流量校准的吸附测量方法及误差分析[J]. 化工学报, 2022, 73(4): 1597-1605.
[8] 王毅, 熊启钊, 陈杨, 杨江峰, 李立博, 李晋平. 锆基金属有机骨架材料用于氨吸附性能的研究[J]. 化工学报, 2022, 73(4): 1772-1780.
[9] 王祺, 房阔, 贺聪慧, 王凯军. 流动电极电容去离子技术综述:研究进展与未来挑战[J]. 化工学报, 2022, 73(3): 975-989.
[10] 钟国栋, 邓超和, 王洋, 王佳韵, 王如竹. 蜂窝状水凝胶吸附床传热传质特性数值模拟及验证[J]. 化工学报, 2022, 73(3): 1083-1092.
[11] 王旭, 张乐瑶, 张昊轩, 演嘉辉, 吴玉帅, 吴冬, 陈汇勇, 马晓迅. 中空孔结构对W掺杂MFI分子筛丙酮吸附行为的研究[J]. 化工学报, 2022, 73(3): 1194-1206.
[12] 刘轩, 苏银皎, 滕阳, 张锴, 王鹏程, 李丽锋, 李圳. 超低排放燃煤机组硒的迁移转化及飞灰对其富集特性[J]. 化工学报, 2022, 73(2): 923-932.
[13] 王洒, 温怡静, 郭丹煜, 周欣, 李忠. 锆基MOF次级结构单元调控及轻烃吸附分离性能增强[J]. 化工学报, 2022, 73(2): 730-738.
[14] 张超, 陈健, 殷文华, 沈圆辉, 钮朝阳, 余秀鑫, 张东辉, 唐忠利. 变压吸附氢气纯化过程瞬态分析[J]. 化工学报, 2022, 73(1): 308-321.
[15] 吴俊晔, 葛天舒, 吴宣楠, 代彦军, 王如竹. 基于吸附剂/木浆纤维纸耦合材料的空气净化[J]. 化工学报, 2021, 72(S1): 520-529.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!