化工学报 ›› 2021, Vol. 72 ›› Issue (1): 366-383.DOI: 10.11949/0438-1157.20201146
收稿日期:
2020-08-10
修回日期:
2020-10-13
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
王艳磊,何宏艳
作者简介:
王琛璐(1995—),女,博士研究生,基金资助:
WANG Chenlu(),WANG Yanlei(),ZHAO Qiu,LYU Yumiao,HUO Feng,HE Hongyan()
Received:
2020-08-10
Revised:
2020-10-13
Online:
2021-01-05
Published:
2021-01-05
Contact:
WANG Yanlei,HE Hongyan
摘要:
离子液体受限于低维纳米空间时,分子热运动会受到极大限制,导致其结构和性质与三维体相离子液体相比具有显著差异。电场、磁场和温度等外部条件及限域通道的尺寸、表面物化性质和几何形貌等因素会极大地影响低维纳米受限离子液体的微观结构与物化性质。本综述围绕低维纳米受限离子液体的最新研究进展,介绍了常用的实验和理论方法,总结了低维纳米受限离子液体结构和氢键网络的动态调控机理,讨论了不同低维纳米受限离子液体体系的热力学性质、物化性质和结构相变等特性,梳理了低维纳米受限离子液体体系在气体分离、限域催化和超级电容器储能等方面的应用,最后展望了低维纳米受限离子液体未来的前景与挑战。
中图分类号:
王琛璐, 王艳磊, 赵秋, 吕玉苗, 霍锋, 何宏艳. 低维纳米受限离子液体的研究进展[J]. 化工学报, 2021, 72(1): 366-383.
WANG Chenlu, WANG Yanlei, ZHAO Qiu, LYU Yumiao, HUO Feng, HE Hongyan. Research progress of low-dimensional nanoconfined ionic liquids[J]. CIESC Journal, 2021, 72(1): 366-383.
1 | Dong K, Liu X M, Dong H F, et al. Multiscale studies on ionic liquids[J]. Chemical Reviews, 2017, 117(10): 6636-6695. |
2 | Hapiot P, Lagrost C. Electrochemical reactivity in room-temperature ionic liquids[J]. Chemical Reviews, 2008, 108(7): 2238-2264. |
3 | Rogers R D, Seddon K R. Ionic liquids - Solvents of the future?[J]. Science, 2003, 302(5646): 792-793. |
4 | Dong K, Zhang S J, Wang J J. Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions[J]. Chemical Communications, 2016, 52(41): 6744-6764. |
5 | 曾少娟, 尚大伟, 余敏, 等. 离子液体在氨气分离回收中的应用及展望[J]. 化工学报, 2019, 70(3): 791-800. |
Zeng S J, Shang D W, Yu M, et al. Applications and perspectives of NH3 separation and recovery with ionic liquids[J]. CIESC Journal, 2019, 70(3): 791-800. | |
6 | 吴智伟, 丁伟璐, 张雅琴, 等. 咪唑类离子液体与酪氨酸相互作用及机理的密度泛函理论研究[J]. 物理化学学报, 2020, 36:2002021. |
Wu Z W, Ding W L, Zhang Y Q, et al. Interaction and mechanism between imidazolium ionic liquids and the zwitterionic amino acid tyr: a DFT study[J]. Acta Physico-Chimica Sinica, 2020, 36: 2002021. | |
7 | Ying W, Cai J S, Zhou K, et al. Ionic liquid selectively facilitates CO2 transport through graphene oxide membrane[J]. ACS Nano, 2018, 12(6): 5385-5393. |
8 | Zeng S J, Zhang X P, Bai L, et al. Ionic-liquid-based CO2 capture systems: structure, interaction and process[J]. Chemical Reviews, 2017, 117(14): 9625-9673. |
9 | Tian Z Q, Mahurin S M, Dai S, et al. Ion-gated gas separation through porous graphene[J]. Nano Letters, 2017, 17(3): 1802-1807. |
10 | Sezginel K B, Keskin S, Uzun A. Tuning the gas separation performance of CuBTC by ionic liquid incorporation[J]. Langmuir, 2016, 32(4): 1139-1147. |
11 | 崔国凯, 吕书贞, 王键吉. 功能化离子液体在二氧化碳吸收分离中的应用[J]. 化工学报, 2020, 71(1): 16-25. |
Cui G K, Lyu S Z, Wang J J. Functional ionic liquids for carbon dioxide capture and separation[J]. CIESC Journal, 2020, 71(1): 16-25. | |
12 | She Z M, Ghosh D, Pope M A. Decorating graphene oxide with ionic liquid nanodroplets: an approach leading to energy-dense, high-voltage supercapacitors[J]. ACS Nano, 2017, 11(10): 10077-10087. |
13 | van Aken K L, Beidaghi M, Gogotsi Y. Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors[J]. Angewandte Chemie-International Edition, 2015, 54(16): 4806-4809. |
14 | Kim T Y, Lee H W, Stoller M, et al. High-Performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes[J]. ACS Nano, 2011, 5(1): 436-442. |
15 | Zhao D, Fabiano S, Berggren M, et al. Ionic thermoelectric gating organic transistors[J]. Nature Communications, 2017, 8: 14214 |
16 | Wang F M, Stepanov P, Gray M, et al. Ionic liquid gating of suspended MoS2 field effect transistor devices[J]. Nano Letters, 2015, 15(8): 5284-5288. |
17 | Zeeshan M, Nozari V, Yagci M B, et al. Core-shell type ionic liquid/metal organic framework composite: an exceptionally high CO2/CH4 selectivity[J]. Journal of the American Chemical Society, 2018, 140(32): 10113-10116. |
18 | Thomas A, Maiyelvaganan K R, Kamalakannan S, et al. Density functional theory studies on zeolitic imidazolate framework-8 and ionic liquid-based composite materials[J]. ACS Omega, 2019, 4(27): 22655-22666. |
19 | Park K S, Ni Z, Cote A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186-10191. |
20 | Marion S, Davis S J, Wu Z Q, et al. Nanocapillary confinement of imidazolium based ionic liquids[J]. Nanoscale, 2020, 12(16): 8867-8874. |
21 | Davenport M, Rodriguez A, Shea K J, et al. Squeezing ionic liquids through nanopores[J]. Nano Letters, 2009, 9(5): 2125-2128. |
22 | Ghoufi A, Szymczyk A, Malfreyt P. Ultrafast diffusion of ionic liquids confined in carbon nanotubes[J]. Scientific Reports, 2016, 6: 28518. |
23 | Berrod Q, Ferdeghini F, Judeinstein P, et al. Enhanced ionic liquid mobility induced by confinement in 1D CNT membranes[J]. Nanoscale, 2016, 8(15): 7845-7848. |
24 | Chen S M, Lim H E, Miyata Y, et al. Transformation of ionic liquid into carbon nanotubes in confined nanospace[J]. Chemical Communications, 2011, 47(37): 10368-10370. |
25 | Wang Y L, Huo F, He H Y, et al. The confined BmimBF4 ionic liquid flow through graphene oxide nanochannels: a molecular dynamics study[J]. Physical Chemistry Chemical Physics, 2018, 20(26): 17773-17780. |
26 | Wang Y L, Wang C L, Zhang Y Q, et al. Molecular insights into the regulatable interfacial property and flow behavior of confined ionic liquids in graphene nanochannels[J]. Small, 2019, 15(29): 1804508. |
27 | Wang C L, Wang Y L, Lu Y M, et al. Height-driven structure and thermodynamic properties of confined ionic liquids inside carbon nanochannels from molecular dynamics study[J]. Physical Chemistry Chemical Physics, 2019, 21(24): 12767-12776. |
28 | Lu Y M, Chen W, Wang Y L, et al. A space-confined strategy toward large-area two-dimensional crystals of ionic liquid[J]. Physical Chemistry Chemical Physics, 2020, 22(4): 1820-1825. |
29 | Ying W, Peng X S. Graphene oxide nanoslit-confined AgBF4/ionic liquid for efficiently separating olefin from paraffin[J]. Nanotechnology, 2020, 31(8): 6. |
30 | Ying W, Han B W, Lin H Q, et al. Laminated mica nanosheets supported ionic liquid membrane for CO2 separation[J]. Nanotechnology, 2019, 30(38): 385705. |
31 | Ying W, Zhou K, Hou Q G, et al. Selectively tuning gas transport through ionic liquid filled graphene oxide nanoslits using an electric field[J]. Journal of Materials Chemistry A, 2019, 7(25): 15062-15067. |
32 | Ying W, Hou Q G, Chen D K, et al. Electrical field facilitates selective transport of CO2 through a laminated MoS2 supported ionic liquid membrane[J]. Journal of Materials Chemistry A, 2019, 7(16): 10041-10046. |
33 | Chen D K, Wang W S, Ying W, et al. CO2-philic WS2 laminated membranes with a nanoconfined ionic liquid[J]. Journal of Materials Chemistry A, 2018, 6(34): 16566-16573. |
34 | Chen D K, Ying W, Guo Y, et al. Enhanced gas separation through nanoconfined ionic liquid in laminated MoS2 membrane[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 44251-44257. |
35 | Lin H, Gong K, Ying W, et al. CO2-philic separation membrane: deep eutectic solvent filled graphene oxide nanoslits[J]. Small, 2019, 15(49): 1904145. |
36 | Xu Q X, Yang F, Zhang X P, et al. Combining ionic liquids and sodium salts into metal-organic framework for high-performance ionic conduction[J]. ChemElectroChem, 2020, 7(1): 183-190. |
37 | Xu Q X, Zhang X P, Zeng S J, et al. Ionic liquid incorporated metal organic framework for high ionic conductivity over extended temperature range[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7892-7899. |
38 | Lan Y S, Yan T A, Tong M M, et al. Large-scale computational assembly of ionic liquid/MOF composites: synergistic effect in the wire-tube conformation for efficient CO2/CH4 separation[J]. Journal of Materials Chemistry A, 2019, 7(20): 12556-12564. |
39 | Rajput N N, Monk J, Hung F R. Ionic liquids confined in a realistic activated carbon model: a molecular simulation study[J]. Journal of Physical Chemistry C, 2014, 118(3): 1540-1553. |
40 | Tian Z Q, Dai S, Jiang D E. Confined ionic liquid in an ionic porous aromatic framework for gas separation[J]. ACS Applied Polymer Materials, 2019, 1(1): 95-102. |
41 | Beattie D A, Espinosa-Marzal R M, Ho T T M, et al. Molecularly-thin precursor films of imidazolium-based ionic liquids on mica[J]. Journal of Physical Chemistry C, 2013, 117(45): 23676-23684. |
42 | Gong X, Wang B C, Li L. Spreading of nanodroplets of ionic liquids on the mica surface[J]. ACS Omega, 2018, 3(12): 16398-16402. |
43 | Wang Z T, Priest C. Impact of nanoscale surface heterogeneity on precursor film growth and macroscopic spreading of [Rmim][NTf2] ionic liquids on mica[J]. Langmuir, 2013, 29(36): 11344-11353. |
44 | Wang C L, Qian C, Li Z, et al. Molecular insights into the abnormal wetting behavior of ionic liquids induced by the solidified ionic layer[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 8028-8036. |
45 | Qian C, Wang Y L, He H Y, et al. Lower limit of interfacial thermal resistance across the interface between an imidazolium ionic liquid and solid surface[J]. Journal of Physical Chemistry C, 2018, 122(38): 22194-22200. |
46 | Castejon H J, Wynn T J, Marcin Z M. Wetting and tribological properties of ionic liquids[J]. Journal of Physical Chemistry B, 2014, 118(13): 3661-3668. |
47 | Herrera C, Garcia G, Atilhan M, et al. Nanowetting of graphene by ionic liquid droplets[J]. Journal of Physical Chemistry C, 2015, 119(43): 24529-24537. |
48 | Zhang S G, Zhang J H, Zhang Y, et al. Nanoconfined ionic liquids[J]. Chemical Reviews, 2017, 117(10): 6755-6833. |
49 | Xie Q, Xin F, Park H G, et al. Ion transport in graphene nanofluidic channels[J]. Nanoscale, 2016, 8(47): 19527-19535. |
50 | Kalman E B, Vlassiouk I, Siwy Z S. Nanofluidic bipolar transistors[J]. Advanced Materials, 2008, 20(2): 293-297. |
51 | Karnik R, Duan C H, Castelino K, et al. Rectification of ionic current in a nanofluidic diode[J]. Nano Letters, 2007, 7(3): 547-551. |
52 | Borghi F, Podesta A. Ionic liquids under nanoscale confinement[J]. Advances in Physics-X, 2020, 5(1): 1736949. |
53 | Gao N W, He Y L, Tao X L, et al. Crystal-confined freestanding ionic liquids for reconfigurable and repairable electronics[J]. Nature Communications, 2019, 10(1): 547. |
54 | Singh M P, Singh R K, Chandra S. Ionic liquids confined in porous matrices: physicochemical properties and applications[J]. Progress in Materials Science, 2014, 64: 73-120. |
55 | Lahrar E H, Belhboub A, Simon P, et al. Ionic liquids under confinement: from systematic variations of the ion and pore sizes toward an understanding of the structure and dynamics in complex porous carbons[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1789-1798. |
56 | Mohammadpour F, Dokoohaki M H, Zolghadr A R, et al. Confinement of aqueous mixtures of ionic liquids between amorphous TiO2 slit nanopores: electrostatic field induction[J]. Physical Chemistry Chemical Physics, 2018, 20(46): 29493-29502. |
57 | Dou H Z, Jiang B, Xu M, et al. Boron nitride membranes with a distinct nanoconfinement effect for efficient ethylene/ethane separation[J]. Angewandte Chemie-International Edition, 2019, 58(39): 13969-13975. |
58 | Xie G X, Luo J B, Guo D, et al. Nanoconfined ionic liquids under electric fields[J]. Applied Physics Letters, 2010, 96(4): 3. |
59 | Zhang S J, Wang Y L, He H Y, et al. A new era of precise liquid regulation: Quasi-liquid[J]. Green Energy & Environment, 2017, 2(4): 329-330. |
60 | Whitby M, Quirke N. Fluid flow in carbon nanotubes and nanopipes[J]. Nature Nanotechnology, 2007, 2(2): 87-94. |
61 | Rossi M P, Ye H H, Gogotsi Y, et al. Environmental scanning electron microscopy study of water in carbon nanopipes[J]. Nano Letters, 2004, 4(5): 989-993. |
62 | Atkin R, Warr G G. Structure in confined room-temperature ionic liquids[J]. Journal of Physical Chemistry C, 2007, 111(13): 5162-5168. |
63 | Seddon J R T. Conservative and dissipative interactions of ionic liquids in nanoconfinement[J]. Journal of Physical Chemistry C, 2014, 118(38): 22197-22201. |
64 | Hayes R, Abedin S Z EI, Atkin R. Pronounced structure in confined aprotic room-temperature ionic liquids[J]. Journal of Physical Chemistry B, 2009, 113(20): 7049-7052. |
65 | Gong X, Kozbial A, Rose F, et al. Effect of π-π+ stacking on the layering of ionic liquids confined to an amorphous carbon surface[J]. ACS Applied Materials & Interfaces, 2015, 7(13): 7078-7081. |
66 | Sheehan A, Jurado L A, Ramakrishna S N, et al. Layering of ionic liquids on rough surfaces[J]. Nanoscale, 2016, 8(7): 4094-4106. |
67 | Meusel M, Lexow M, Gezmis A, et al. Atomic force and scanning tunneling microscopy of ordered ionic liquid wetting layers from 110 K up to room temperature[J]. ACS Nano, 2020, 14(7): 9000-9010. |
68 | Galluzzi M, Bovio S, Milani P, et al. Surface confinement induces the formation of solid-like insulating ionic liquid nanostructures[J]. Journal of Physical Chemistry C, 2018, 122(14): 7934-7944. |
69 | Comtet J, Nigues A, Kaiser V, et al. Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening[J]. Nature Materials, 2017, 16(6): 634-639. |
70 | Atkin R, Borisenko N, Drueschler M, et al. An in situ STM/AFM and impedance spectroscopy study of the extremely pure 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate/Au(111) interface: potential dependent solvation layers and the herringbone reconstruction[J]. Physical Chemistry Chemical Physics, 2011, 13(15): 6849-6857. |
71 | Jiang F L, Li C, Fu H Y, et al. Temperature-induced molecular rearrangement of an ionic liquid confined in nanospaces: an in situ X-ray absorption fine structure study[J]. Journal of Physical Chemistry C, 2015, 119(39): 22724-22731. |
72 | Fujie K, Yamada T, Ikeda R, et al. Introduction of an ionic liquid into the micropores of a metal-organic framework and its anomalous phase behavior[J]. Angewandte Chemie-International Edition, 2014, 53(42): 11302-11305. |
73 | Neouze M A, Le Bideau J, Leroux F, et al. A route to heat resistant solid membranes with performances of liquid electrolytes[J]. Chemical Communications, 2005, (8): 1082-1084. |
74 | Nayeri M, Aronson M T, Bernin D, et al. Surface effects on the structure and mobility of the ionic liquid C6C1ImTFSI in silica gels[J]. Soft Matter, 2014, 10(30): 5618-5627. |
75 | Le Bideau J, Gaveau P, Bellayer S, et al. Effect of confinement on ionic liquids dynamics in monolithic silica ionogels: 1H NMR study[J]. Physical Chemistry Chemical Physics, 2007, 9(40): 5419-5422. |
76 | Waechtler M, Sellin M, Stark A, et al. 2H and 19F solid-state NMR studies of the ionic liquid [C2Py][BTA]-d10 confined in mesoporous silica materials[J]. Physical Chemistry Chemical Physics, 2010, 12(37): 11371-11379. |
77 | Forse A C, Griffin J M, Merlet C, et al. NMR study of ion dynamics and charge storage in ionic liquid supercapacitors[J]. Journal of the American Chemical Society, 2015, 137(22): 7231-7242. |
78 | Chen S M, Kobayashi K, Miyata Y, et al. Morphology and melting behavior of ionic liquids inside single-walled carbon nanotubes[J]. Journal of the American Chemical Society, 2009, 131(41): 14850-14856. |
79 | Chen S M, Wu G Z, Sha M L, et al. Transition of ionic liquid [bmim][PF6] from liquid to high-melting-point crystal when confined in multiwalled carbon nanotubes[J]. Journal of the American Chemical Society, 2007, 129(9): 2416-2417. |
80 | Romanos G E, Stefanopoulos K L, Vangeli O C, et al.: Investigation of physically and chemically ionic liquid confinement in nanoporous materials by a combination of SANS, contrast-matching SANS, XRD and nitrogen adsorption[C]//5th European Conference on Neutron Scattering, 2012. |
81 | Arellano I H, Madani S H, Huang J, et al. Carbon dioxide adsorption by zinc-functionalized ionic liquid impregnated into bio-templated mesoporous silica beads[J]. Chemical Engineering Journal, 2016, 283: 692-702. |
82 | Wu C M, Lin S Y. Close packing existence of short-chain ionic liquid confined in the nanopore of silica lonogel[J]. Journal of Physical Chemistry C, 2015, 119(22): 12335-12344. |
83 | Ohba T, Hata K, Chaban V V. Nanocrystallization of imidazolium ionic liquid in carbon nanotubes[J]. Journal of Physical Chemistry C, 2015, 119(51): 28424-28429. |
84 | Lynden-Bell R M, Del Popolo M G, Youngs T G A, et al. Simulations of ionic liquids, solutions, and surfaces[J]. Accounts of Chemical Research, 2007, 40(11): 1138-1145. |
85 | Wang Y T, Jiang W, Yan T Y, et al. Understanding ionic liquids through atomistic and coarse-grained molecular dynamics simulations[J]. Accounts of Chemical Research, 2007, 40(11): 1193-1199. |
86 | Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 16 Rev. B.01. Wallingford, CT, 2016. |
87 | Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. |
88 | Vucemilovic-Alagic N, Banhatti R D, Stepic R, et al. Insights from molecular dynamics simulations on structural organization and diffusive dynamics of an ionic liquid at solid and vacuum interfaces[J]. Journal of Colloid and Interface Science, 2019, 553: 350-363. |
89 | Rajput N N, Monk J, Hung F R. Structure and dynamics of an ionic liquid confined inside a charged slit graphitic nanopore[J]. Journal of Physical Chemistry C, 2012, 116(27): 14504-14513. |
90 | Sha M L, Dou Q, Wu G Z. Molecular dynamics simulation of ionic liquids adsorbed onto a solid surface and confined in nanospace[J]. Chemical Modelling: Applications and Theory, 2012, 9: 186-217. |
91 | Li S, Han K S, Feng G, et al. Dynamic and structural properties of room-temperature ionic liquids near silica and carbon surfaces[J]. Langmuir, 2013, 29(31): 9744-9749. |
92 | Gao J P, Luedtke W D, Landman U. Layering transitions and dynamics of confined liquid films[J]. Physical Review Letters, 1997, 79(4): 705-708. |
93 | Seeck O H, Kim H, Lee D R, et al. Observation of thickness quantization in liquid films confined to molecular dimension[J]. Europhysics Letters, 2002, 60(3): 376-382. |
94 | Ohba T, Chaban V V. A highly viscous imidazolium ionic liquid inside carbon nanotubes[J]. Journal of Physical Chemistry B, 2014, 118(23): 6234-6240. |
95 | Singh R, Monk J, Hung F R. A computational study of the behavior of the ionic liquid [BMIM+][PF6-] confined inside multiwalled carbon nanotubes[J]. Journal of Physical Chemistry C, 2010, 114(36): 15478-15485. |
96 | Akbarzadeh H, Abbaspour M, Salemi S, et al. Investigation of the melting of ionic liquid [emim][PF6] confined inside carbon nanotubes using molecular dynamics simulations[J]. RSC Advances, 2015, 5(5): 3868-3874. |
97 | Dong K, Zhou G H, Liu X M, et al. Structural evidence for the ordered crystallites of ionic liquid in confined carbon nanotubes[J]. Journal of Physical Chemistry C, 2009, 113(23): 10013-10020. |
98 | Dou Q, Sha M L, Fu H Y, et al. Melting transition of ionic liquid [bmim][PF6] crystal confined in nanopores: a molecular dynamics simulation[J]. Journal of Physical Chemistry C, 2011, 115(39): 18946-18951. |
99 | Mo T M, Bi S, Zhang Y, et al. Ion structure transition enhances charging dynamics in subnanometer pores[J]. ACS Nano, 2020, 14(2): 2395-2403. |
100 | Pinilla C, Del Popolo M G, Lynden-Bell R M, et al. Structure and dynamics of a confined ionic liquid. topics of relevance to dye-sensitized solar cells[J]. Journal of Physical Chemistry B, 2005, 109(38): 17922-17927. |
101 | Sha M L, Wu G Z, Fang H P, et al. Liquid-to-solid phase transition of a 1,3-dimethylimidazolium chloride ionic liquid monolayer confined between graphite walls[J]. Journal of Physical Chemistry C, 2008, 112(47): 18584-18587. |
102 | Chaban V V, Prezhdo O V. Nanoscale carbon greatly enhances mobility of a highly viscous ionic liquid[J]. ACS Nano, 2014, 8(8): 8190-8197. |
103 | Kowsari M H, Alavi S, Ashrafizaadeh M, et al. Molecular dynamics simulation of imidazolium-based ionic liquids(Ⅱ): Transport coefficients[J]. Journal of Chemical Physics, 2009, 130(1): 147. |
104 | Kowsari M H, Alavi S, Ashrafizaadeh M, et al. Molecular dynamics simulation of imidazolium-based ionic liquids(Ⅰ): Dynamics and diffusion coefficient[J]. Journal of Chemical Physics, 2008, 129(22): 2038. |
105 | Kondrat S, Wu P, Qiao R, et al. Accelerating charging dynamics in subnanometre pores[J]. Nature Materials, 2014, 13(4): 387-393. |
106 | Coasne B, Viau L, Vioux A. Loading-controlled stiffening in nanoconfined ionic liquids[J]. Journal of Physical Chemistry Letters, 2011, 2(10): 1150-1154. |
107 | Jiang X K, Huang J S, Sumpter B G, et al. Electro-induced dewetting and concomitant ionic current avalanche in nanopores[J]. Journal of Physical Chemistry Letters, 2013, 4(18): 3120-3126. |
108 | Huang J Y, Lo Y C, Niu J J, et al. Nanowire liquid pumps[J]. Nature Nanotechnology, 2013, 8(4): 277-281. |
109 | Shin J H, Kim G H, Kim I, et al. Ionic liquid flow along the carbon nanotube with DC electric field[J]. Scientific Reports, 2015, 5(1): 13325. |
110 | Wu N H, Ji X Y, Xie W L, et al. Confinement phenomenon effect on the CO2 absorption working capacity in ionic liquids immobilized into porous solid supports[J]. Langmuir, 2017, 33(42): 11719-11726. |
111 | Kang S W, Char K, Kang Y S. Novel application of partially positively charged silver nanoparticles for facilitated transport in olefin/paraffin separation membranes[J]. Chemistry of Materials, 2008, 20(4): 1308-1311. |
112 | Riisager A, Fehrmann R, Haumann M, et al. Stability and kinetic studies of supported ionic liquid phase catalysts for hydroformylation of propene[J]. Industrial & Engineering Chemistry Research, 2005, 44(26): 9853-9859. |
113 | Fan J, Yu C Z, Lei J, et al. Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores[J]. Journal of the American Chemical Society, 2005, 127(31): 10794-10795. |
114 | Su Q, Qi Y Q, Yao X Q, et al. Ionic liquids tailored and confined by one-step assembly with mesoporous silica for boosting the catalytic conversion of CO2 into cyclic carbonates[J]. Green Chemistry, 2018, 20(14): 3232-3241. |
115 | Steinrueck H P, Libuda J, Wasserscheid P, et al. Surface science and model catalysis with ionic liquid-modified materials[J]. Advanced Materials, 2011, 23(22-23): 2571-2587. |
116 | Kernchen U, Etzold B, Korth W, et al. Solid catalyst with ionic liquid layer (SCILL) — a new concept to improve selectivity illustrated by hydrogenation of cyclooctadiene[J]. Chemical Engineering & Technology, 2007, 30(8): 985-994. |
117 | Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313(5794): 1760-1763. |
118 | Largeot C, Portet C, Chmiola J, et al. Relation between the ion size and pore size for an electric double-layer capacitor[J]. Journal of the American Chemical Society, 2008, 130(9): 2730-2731. |
119 | Feng G, Cummings P T. Supercapacitor capacitance exhibits oscillatory behavior as a function of nanopore size[J]. Journal of Physical Chemistry Letters, 2011, 2(22): 2859-2864. |
120 | Wang Y L, Qian C, Huo F, et al. Molecular mechanism of anion size regulating the nanostructure and charging process at ionic liquid-electrode interfaces[J]. Journal of Materials Chemistry A, 2020, 8: 19908-19916. |
121 | Bi S, Banda H, Chen M, et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes[J]. Nature Materials, 2020, 19(5): 552-558. |
122 | Yao M, Liu A, Xing C, et al. Asymmetric supercapacitor comprising a core-shell TiNb2O7@MoS2/C anode and a high voltage ionogel electrolyte[J]. Chemical Engineering Journal, 2020, 394(15): 124883. |
123 | Lian C, Janssen M, Liu H L, et al. Blessing and curse: how a supercapacitor's large capacitance causes its slow charging[J]. Physical Review Letters, 2020, 124(7): 076001. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[3] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[4] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[5] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[6] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[7] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[8] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[9] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[10] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[11] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[12] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[13] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[14] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[15] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||