化工学报 ›› 2021, Vol. 72 ›› Issue (12): 6188-6202.DOI: 10.11949/0438-1157.20210624
张娅1(),王锐1,文思斯1,周燚洒1,薛健1(),王海辉2()
收稿日期:
2021-05-07
修回日期:
2021-10-28
出版日期:
2021-12-05
发布日期:
2021-12-22
通讯作者:
薛健,王海辉
作者简介:
张娅(1997—),女,硕士研究生,基金资助:
Ya ZHANG1(),Rui WANG1,Sisi WEN1,Yisa ZHOU1,Jian XUE1(),Haihui WANG2()
Received:
2021-05-07
Revised:
2021-10-28
Online:
2021-12-05
Published:
2021-12-22
Contact:
Jian XUE,Haihui WANG
摘要:
石墨相氮化碳(g-C3N4)纳米片由于具有本征孔、高孔密度、高稳定性、高力学强度、大比表面积、化学环境可调节等特性,在气体分离、渗透汽化、脱盐等膜分离工艺中具有独特的优势,从而引起了研究人员的广泛关注。本文介绍了g-C3N4纳米片的结构和性质,总结了g-C3N4纳米片的制备方法,阐述了不同形式的g-C3N4纳米片基分离膜,讨论了g-C3N4纳米片膜在分离中的应用,提出了g-C3N4纳米片膜的存在的问题和未来的发展趋势。
中图分类号:
张娅, 王锐, 文思斯, 周燚洒, 薛健, 王海辉. 石墨相氮化碳纳米片膜研究进展[J]. 化工学报, 2021, 72(12): 6188-6202.
Ya ZHANG, Rui WANG, Sisi WEN, Yisa ZHOU, Jian XUE, Haihui WANG. Research progress of graphitic carbon nitride nanosheets membrane[J]. CIESC Journal, 2021, 72(12): 6188-6202.
图6 GO-g-C3N4复合膜层间分子传输过程示意图[81]
Fig.6 Schematic illustration of the separation process of molecules through the corrugations in GOCN composite membrane[81]
图7 GO修饰g-C3N4纳米片膜的气体分子传输示意图及气体分离性能图[86]
Fig.7 Illustration of the gas molecular transport through the GO-modified g-C3N4 nanosheets membranes and the gas separation performance [86]
图8 水在g-C3N4纳米片膜中的传输示意图以及性能图[26]EB—伊文思蓝染料; RB—罗丹明B染料; cyt c—细胞色素C; Au—金纳米粒子
Fig.8 Water transport diagram and performance diagram in g-C3N4 nanosheet membrane[26]
1 | Zhang Z, Wen L P, Jiang L. Bioinspired smart asymmetric nanochannel membranes[J]. Chemical Society Reviews, 2018, 47(2): 322-356. |
2 | Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
3 | Monjezi B H, Kutonova K, Tsotsalas M, et al. Current trends in metal-organic and covalent organic framework membrane materials[J]. Angewandte Chemie International Edition, 2021, 60(28): 15153-15164. |
4 | Lee A, Elam J W, Darling S B. Membrane materials for water purification: design, development, and application[J]. Environmental Science: Water Research & Technology, 2016, 2(1): 17-42. |
5 | Kosinov N, Gascon J, Kapteijn F, et al. Recent developments in zeolite membranes for gas separation[J]. Journal of Membrane Science, 2016, 499: 65-79. |
6 | Baker R W, Low B T. Gas separation membrane materials: a perspective[J]. Macromolecules, 2014, 47(20): 6999-7013. |
7 | Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
8 | Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
9 | Qian Y J, Shang J, Liu D, et al. Enhanced ion sieving of graphene oxide membranes via surface amine functionalization[J]. Journal of the American Chemical Society, 2021, 143(13): 5080-5090. |
10 | Zhang M C, Guan K C, Ji Y F, et al. Controllable ion transport by surface-charged graphene oxide membrane[J]. Nature Communications, 2019, 10: 1253. |
11 | Li G L, Qi Y M, Lin H B, et al. Ni-metal-organic-framework (Ni-MOF) membranes from multiply stacked nanosheets (MSNs) for efficient molecular sieve separation in aqueous and organic solvent[J] Journal of Membrane Science, 2021, 635(1): 119470. |
12 | Fan H W, Peng M H, Strauss I, et al. MOF-in-COF molecular sieving membrane for selective hydrogen separation[J]. Nature Communications, 2021, 12(1): 38. |
13 | Wang J, Zhang Z J, Zhu J N, et al. Ion sieving by a two-dimensional Ti3C2Tx alginate lamellar membrane with stable interlayer spacing[J]. Nature Communications, 2020, 11(1): 3540. |
14 | Ding L, Wei Y, Li L, et al. MXene molecular sieving membranes for highly efficient gas separation[J]. Nat. Commun., 2018, 9(1): 155. |
15 | Wan X Y, Wan T, Cao C C, et al. Accelerating CO2 transport through nanoconfined magnetic ionic liquid in laminated BN membrane[J]. Chemical Engineering Journal, 2021, 421 (1): 130309. |
16 | Chen C, Liu D, Wang J M, et al. Functionalized boron nitride membranes with multipurpose and super-stable semi-permeability in solvents[J]. Journal of Materials Chemistry A, 2018, 6(42): 21104-21109. |
17 | Wang S F, Yang L X, He G W, et al. Two-dimensional nanochannel membranes for molecular and ionic separations[J]. Chemical Society Reviews, 2020, 49: 1071-1089. |
18 | Zheng Z K, Grünker R, Feng X L. Synthetic two-dimensional materials: a new paradigm of membranes for ultimate separation[J]. Advanced Materials, 2016, 28(31): 6529-6545. |
19 | Zhu Q B, Xuan Y M, Zhang K, et al. Enhancing photocatalytic CO2 reduction performance of g-C3N4-based catalysts with non-noble plasmonic nanoparticles[J]. Applied Catalysis B: Environmental, 2021, 297: 120440. |
20 | Wang X Y, Meng J Q, Zhang X Y, et al. Controllable approach to carbon-deficient and oxygen-doped graphitic carbon nitride: robust photocatalyst against recalcitrant organic pollutants and the mechanism insight[J]. Advanced Functional Materials, 2021, 31(20): 2010763. |
21 | Zhang H J, Zheng D W, Cai Z, et al. Graphitic carbon nitride nanomaterials for multicolor light-emitting diodes and bioimaging[J]. ACS Applied Nano Materials, 2020, 3(7): 6798-6805. |
22 | Cai Z, Chen J R, Xing S S, et al. Highly fluorescent g-C3N4 nanobelts derived from bulk g-C3N4 for NO2 gas sensing[J]. Journal of Hazardous Materials, 2021, 416: 126195. |
23 | Chen J J, Mao Z Y, Zhang L X, et al. Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes[J]. ACS Nano, 2017, 11(12): 12650-12657. |
24 | Bai L Q, Huang H W, Zhang S G, et al. Photocatalysis-assisted Co3O4/g-C3N4 p-n junction all-solid-state supercapacitors: a bridge between energy storage and photocatalysis[J]. Advanced Science, 2020,7(22): 2001939. |
25 | Cao K T, Jiang Z Y, Zhang X S, et al. Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix[J]. Journal of Membrane Science, 2015, 490: 72-83. |
26 | Wang Y J, Li L B, Wei Y Y, et al. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers[J]. Angewandte Chemie, 2017, 129(31): 9102-9108. |
27 | Huang L, Li Y R, Zhou Q Q, et al. Graphene oxide membranes with tunable semipermeability in organic solvents[J]. Advanced Materials, 2015, 27(25): 3797-3802. |
28 | Liao G F, Gong Y, Zhang L, et al. Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light[J]. Energy & Environmental Science, 2019, 12(7): 2080-2147. |
29 | Tian Z Z, Wang S F, Wang Y T, et al. Enhanced gas separation performance of mixed matrix membranes from graphitic carbon nitride nanosheets and polymers of intrinsic microporosity[J]. Journal of Membrane Science, 2016, 514: 15-24. |
30 | Villalobos L F, Vahdat M T, Dakhchoune M, et al. Large-scale synthesis of crystalline g-C3N4 nanosheets and high-temperature H2 sieving from assembled films[J]. Science Advances, 2020, 6(4): eaay9851. |
31 | Wang J, Li M S, Zhou S Y, et al. Graphitic carbon nitride nanosheets embedded in poly(vinyl alcohol) nanocomposite membranes for ethanol dehydration via pervaporation[J]. Separation and Purification Technology, 2017, 188: 24-37. |
32 | Wang Y J, Liu L F, Xue J, et al. Enhanced water flux through graphitic carbon nitride nanosheets membrane by incorporating polyacrylic acid[J]. AIChE Journal, 2018, 64(6): 2181-2188. |
33 | Ran J, Pan T, Wu Y Y, et al. Endowing g-C3N4 membranes with superior permeability and stability by using acid spacers[J]. Angewandte Chemie, 2019, 131(46): 16615-16620. |
34 | Liebig J. Uber einige stickstoff - verbindungen[J]. Annalen Der Pharmacie, 1834, 10(1): 1-47. |
35 | Liu A Y, Cohen M L. Prediction of new low compressibility solids[J]. Science, 1989, 245(4920): 841-842. |
36 | Teter D M, Hemley R J. Low-compressibility carbon nitrides[J]. Science, 1996, 271(5245): 53-55. |
37 | Ong W J, Tan L L, Ng Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? [J]. Chemical Reviews, 2016, 116(12): 7159-7329. |
38 | Kroke E, Schwarz M, Horath-Bordon E, et al. Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures [J]. New Journal of Chemistry, 2002, 26: 508-512. |
39 | Ma X G, Lv Y, Xu J, et al. A strategy of enhancing the photoactivity of g-C3N4via doping of nonmetal elements: a first-principles study[J]. The Journal of Physical Chemistry C, 2012, 116(44): 23485-23493. |
40 | Thomas A, Fischer A, Goettmann F, et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts[J]. Journal of Materials Chemistry, 2008, 18(41): 4893. |
41 | Luo Y Q, Yan Y, Zheng S S, et al. Graphitic carbon nitride based materials for electrochemical energy storage[J]. Journal of Materials Chemistry A, 2019, 7(3): 901-924. |
42 | Hou Y, Wen Z H, Cui S M, et al. Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity[J]. Advanced Materials, 2013, 25(43): 6291-6297. |
43 | Wang Y, Wang X C, Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry[J]. Angewandte Chemie International Edition, 2012, 51(1): 68-89. |
44 | Cao Q, Kumru B, Antonietti M, et al. Graphitic carbon nitride and polymers: a mutual combination for advanced properties[J]. Materials Horizons, 2020, 7(3): 762-786. |
45 | Wang Y, Gao B Y, Yue Q Y, et al. Graphitic carbon nitride (g-C3N4)-based membranes for advanced separation[J]. Journal of Materials Chemistry A, 2020, 8: 19133-19155. |
46 | Niu P, Zhang L L, Liu G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Advanced Functional Materials, 2012, 22(22): 4763-4770. |
47 | Ott S, Lakmann M, Backes C, et al. Impact of pretreatment of the bulk starting material on the efficiency of liquid phase exfoliation of WS2[J]. Nanomaterials, 2021, 11(5): 1072. |
48 | Shi D, Yang M Z, Chang B, et al. Ultrasonic-ball milling: a novel strategy to prepare large-size ultrathin 2D materials[J]. Small, 2020, 16(13): 1906734. |
49 | Das R, Solís-Fernández P, Breite D, et al. High flux and adsorption based non-functionalized hexagonal boron nitride lamellar membrane for ultrafast water purification[J]. Chemical Engineering Journal, 2021, 420: 127721. |
50 | Sun G X, Bi J Q. Scalable production of boron nitride nanosheets in ionic liquids by shear-assisted thermal treatment[J]. Ceramics International, 2021, 47(6): 7776-7782. |
51 | Wang H L, Lv W Z, Shi J, et al. Efficient liquid nitrogen exfoliation of MoS2 ultrathin nanosheets in the pure 2H phase[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(1):84-90. |
52 | Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9): 563-568. |
53 | Coleman J N, Lotya M, O'Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571. |
54 | Zhang X, Xie X, Wang H, et al. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging[J]. Journal of the American Chemical Society, 2013, 135(1): 18-21. |
55 | Zhao H X, Yu H T, Quan X, et al. Atomic single layer graphitic-C3N4: fabrication and its high photocatalytic performance under visible light irradiation[J]. RSC Adv., 2014, 4(2): 624-628. |
56 | Kumar S, Surendar T, Kumar B, et al. Synthesis of highly efficient and recyclable visible-light responsive mesoporous g-C3N4 photocatalyst via facile template-free sonochemical route[J]. RSC Advances, 2014, 4(16): 8132. |
57 | Yu S Y, Webster R D, Zhou Y, et al. Ultrathin g-C3N4 nanosheets with hexagonal CuS nanoplates as a novel composite photocatalyst under solar light irradiation for H2 production[J]. Catalysis Science & Technology, 2017, 7(10): 2050-2056. |
58 | Ma L T, Fan H Q, Li M M, et al. A simple melamine-assisted exfoliation of polymeric graphitic carbon nitrides for highly efficient hydrogen production from water under visible light[J]. Journal of Materials Chemistry A, 2015, 3(44): 22404-22412. |
59 | She X J, Xu H, Xu Y G, et al. Exfoliated graphene-like carbon nitride in organic solvents: enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amounts of Cu2+[J]. Journal of Materials Chemistry A, 2014, 2(8): 2563. |
60 | Zhang J S, Chen Y, Wang X C. Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications[J]. Energy & Environmental Science, 2015, 8(11): 3092-3108. |
61 | Lin Q Y, Li L, Liang S J, et al. Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities[J]. Applied Catalysis B: Environmental, 2015, 163: 135-142. |
62 | Zhou K G, Mao N N, Wang H X, et al. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues[J]. Angewandte Chemie International Edition, 2011, 50(46): 10839-10842. |
63 | Han Q, Wang B, Gao J, et al. Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution[J]. ACS Nano, 2016, 10(2): 2745-2751. |
64 | Xu J, Zhang L W, Shi R, et al. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis[J]. Journal of Materials Chemistry A, 2013, 1(46): 14766. |
65 | Yin Y, Han J C, Zhang X H, et al. Facile synthesis of few-layer-thick carbon nitride nanosheets by liquid ammonia-assisted lithiation method and their photocatalytic redox properties[J]. RSC Adv., 2014, 4(62): 32690-32697. |
66 | Lu X L, Xu K, Chen P Z, et al. Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity[J]. J. Mater. Chem. A, 2014, 2(44): 18924-18928. |
67 | He F, Chen G, Yu Y G, et al. The sulfur-bubble template-mediated synthesis of uniform porous g-C3N4 with superior photocatalytic performance[J]. Chemical Communications, 2015, 51(2): 425-427. |
68 | Hong Y Z, Li C S, Fang Z Y, et al. Rational synthesis of ultrathin graphitic carbon nitride nanosheets for efficient photocatalytic hydrogen evolution[J]. Carbon, 2017, 121: 463-471. |
69 | Huang H W, Xiao K, Tian N, et al. Template-free precursor-surface-etching route to porous, thin g-C3N4 nanosheets for enhancing photocatalytic reduction and oxidation activity[J]. Journal of Materials Chemistry A, 2017, 5(33): 17452-17463. |
70 | Liu Q, Wang X L, Yang Q, et al. A novel route combined precursor-hydrothermal pretreatment with microwave heating for preparing holey g-C3N4 nanosheets with high crystalline quality and extended visible light absorption[J]. Applied Catalysis B: Environmental, 2018, 225: 22-29. |
71 | Xiao Y, Tian G, Li W, et al. Molecule self-assembly synthesis of porous few-layer carbon nitride for highly efficient photoredox catalysis[J]. Journal of the American Chemical Society, 2019, 141(6): 2508-2515. |
72 | Zhao C X, Chen Z P, Xu J S, et al. Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets[J]. Applied Catalysis B: Environmental, 2019, 256: 117867. |
73 | Lu Q J, Deng J H, Hou Y X, et al. One-step electrochemical synthesis of ultrathin graphitic carbon nitride nanosheets and their application to the detection of uric acid[J]. Chemical Communications, 2015, 51(61): 12251-12253. |
74 | Huang M H, Wang Z G, Jin J. Two-dimensional microporous material-based mixed matrix membranes for gas separation[J]. Chemistry—an Asian Journal, 2020, 15(15): 2303-2315. |
75 | Soto-Herranz M, Sánchez-Báscones M, Hérnandez-Giménez A, et al. Effects of protonation, hydroxylamination, and hydrazination of g-C3N4 on the performance of matrimid®/g-C3N4 membranes[J]. Nanomaterials, 2018, 8(12): 1010. |
76 | Ye W Y, Liu H W, Lin F, et al. High-flux nanofiltration membranes tailored by bio-inspired co-deposition of hydrophilic g-C3N4 nanosheets for enhanced selectivity towards organics and salts[J]. Environmental Science: Nano, 2019, 6(10): 2958-2967. |
77 | Li B R, Meng M J, Cui Y H, et al. Changing conventional blending photocatalytic membranes (BPMs): Focus on improving photocatalytic performance of Fe3O4/g-C3N4/PVDF membranes through magnetically induced freezing casting method[J]. Chemical Engineering Journal, 2019, 365: 405-414. |
78 | Marzi Khosrowshahi E, Matin A A. A monolithic graphitic carbon nitride/polyethersulfone nanocomposite: an application of a mixed matrix membrane as a solid-phase microextraction fiber[J]. Microchimica Acta, 2019, 186(10): 1-7. |
79 | Wu X L, Cui X L, Wang Q, et al. Manipulating the cross-layer channels in g-C3N4 nanosheet membranes for enhanced molecular transport[J]. Journal of Materials Chemistry A, 2021, 9(7): 4193-4202. |
80 | Huang J H, Hu J L, Shi Y H, et al. Evaluation of self-cleaning and photocatalytic properties of modified g-C3N4 based PVDF membranes driven by visible light[J]. Journal of Colloid and Interface Science, 2019, 541: 356-366. |
81 | Liu L F, Zhou Y S, Xue J, et al. Enhanced antipressure ability through graphene oxide membrane by intercalating g-C3N4 nanosheets for water purification[J]. AIChE Journal, 2019, 65(10): e16699. |
82 | Hou J M, Wei Y Y, Zhou S, et al. Highly efficient H2/CO2 separation via an ultrathin metal-organic framework membrane[J]. Chemical Engineering Science, 2018, 182: 180-188. |
83 | Li F, Qu Y Y, Zhao M W. Efficient helium separation of graphitic carbon nitride membrane[J]. Carbon, 2015, 95: 51-57. |
84 | Ji Y J, Dong H L, Lin H P, et al. Heptazine-based graphitic carbon nitride as an effective hydrogen purification membrane[J]. RSC Advances, 2016, 6(57): 52377-52383. |
85 | de Silva S W, Du A, Senadeera W, et al. Strained graphitic carbon nitride for hydrogen purification[J]. Journal of Membrane Science, 2017, 528: 201-205. |
86 | Zhou Y S, Zhang Y, Xue J, et al. Graphene oxide-modified g-C3N4 nanosheet membranes for efficient hydrogen purification[J]. Chemical Engineering Journal, 2021, 420: 129574. |
87 | Wang J, Li M S, Zhou S Y, et al. Controllable construction of polymer/inorganic interface for poly (vinyl alcohol)/graphitic carbon nitride hybrid pervaporation membranes[J]. Chemical Engineering Science, 2018, 181: 237-250. |
88 | Ding H, Pan F S, Mulalic E, et al. Enhanced desulfurization performance and stability of Pebax membrane by incorporating Cu+ and Fe2+ ions co-impregnated carbon nitride[J]. Journal of Membrane Science, 2017, 526: 94-105. |
89 | Foglia F, Clancy A J, Berry-Gair J, et al. Aquaporin-like water transport in nanoporous crystalline layered carbon nitride[J]. Science Advances, 2020, 6(39): eabb6011. |
90 | Wang Y, Wu N N, Wang Y, et al. Graphite phase carbon nitride based membrane for selective permeation[J]. Nature Communications, 2019, 10: 2500. |
91 | Gao X, Li Y M, Yang X L, et al. Highly permeable and antifouling reverse osmosis membranes with acidified graphitic carbon nitride nanosheets as nanofillers[J]. Journal of Materials Chemistry A, 2017, 5(37): 19875-19883. |
92 | Liu Y C, Cheng Z W, Song M R, et al. Molecular dynamics simulation-directed rational design of nanoporous graphitic carbon nitride membranes for water desalination[J]. Journal of Membrane Science, 2021, 620: 118869. |
93 | Wu Y Y, Fu C F, Huang Q, et al. 2D heterostructured nanofluidic channels for enhanced desalination performance of graphene oxide membranes[J]. ACS Nano, 2021, 15(4): 7586-7595. |
94 | Bi Q Y, Zhang C, Liu J D, et al. A nanofiltration membrane prepared by PDA-C3N4 for removal of divalent ions[J]. Water Science and Technology, 2020, 81(2): 253-264. |
95 | Xu C W, Shao F F, Yi Z, et al. Highly chlorine resistance polyamide reverse osmosis membranes with oxidized graphitic carbon nitride by ontology doping method[J]. Separation and Purification Technology, 2019, 223: 178-185. |
96 | Chen J X, Li Z Y, Wang C B, et al. Synthesis and characterization of g-C3N4 nanosheet modified polyamide nanofiltration membranes with good permeation and antifouling properties[J]. RSC Advances, 2016, 6(113): 112148-112157. |
97 | Shahabi S S, Azizi N, Vatanpour V, et al. Novel functionalized graphitic carbon nitride incorporated thin film nanocomposite membranes for high-performance reverse osmosis desalination[J]. Separation and Purification Technology, 2020, 235: 116134. |
98 | Li R, Ren Y L, Zhao P X, et al. Graphitic carbon nitride (g-C3N4) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance[J]. Journal of Hazardous Materials, 2019, 365: 606-614. |
99 | Dong L J, Liao Q, Wu C L, et al. The microscopic insights into the adsorption of Cu2+, Pb2+and Zn2+onto g-C3N4 surfaces by a combined spectroscopic characterization and DFT theoretical calculations[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105433. |
100 | Xie H T, Zhang J N, Wang D, et al. Construction of three-dimensional g-C3N4/attapulgite hybrids for Cd(II) adsorption and the reutilization of waste adsorbent[J]. Applied Surface Science, 2020, 504: 144456. |
101 | Zhou K G, McManus D, Prestat E, et al. Self-catalytic membrane photo-reactor made of carbon nitride nanosheets[J]. Journal of Materials Chemistry A, 2016, 4(30): 11666-11671. |
102 | Xiao K, Giusto P, Wen L P, et al. Nanofluidic ion transport and energy conversion through ultrathin free-standing polymeric carbon nitride membranes[J]. Angewandte Chemie, 2018, 130(32): 10280-10283. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[4] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[5] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[6] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[9] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[11] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[12] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[13] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[14] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[15] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||