化工学报 ›› 2021, Vol. 72 ›› Issue (10): 5132-5141.DOI: 10.11949/0438-1157.20210484
张磊1,2(),戴叶1,2,陈兴伟1,张洁1,邹杨1,2()
收稿日期:
2021-04-08
修回日期:
2021-07-23
出版日期:
2021-10-05
发布日期:
2021-10-05
通讯作者:
邹杨
作者简介:
张磊(1996—),男,博士研究生,基金资助:
Lei ZHANG1,2(),Ye DAI1,2,Xingwei CHEN1,Jie ZHANG1,Yang ZOU1,2()
Received:
2021-04-08
Revised:
2021-07-23
Online:
2021-10-05
Published:
2021-10-05
Contact:
Yang ZOU
摘要:
为了研究异型对于热管性能的影响,对三支铜-水热管进行了实验研究。加热温度范围为50~90℃,冷却水流量范围为40~104 L/h,对比不同工况下的启动性能、等温性能,结果表明,异型管在加热温度较低时可能出现“温度滞后”现象,从而使启动时间显著增加;异型使得热管等温性能变差但仍在可接受的范围内。对不同应用条件下的最大传热功率、蒸发段传热热阻、整体热阻进行了研究,实验表明:加热温度较低时,异型对于最大传热功率及传热热阻的影响较大,当加热温度大于80℃时,异型管与直管之间最大传热功率的差值缩小到30%以内,且此时的传热热阻达到10-2量级水平。
中图分类号:
张磊,戴叶,陈兴伟,张洁,邹杨. 折弯异型对铜-水热管传热性能影响的实验研究[J]. 化工学报, 2021, 72(10): 5132-5141.
Lei ZHANG,Ye DAI,Xingwei CHEN,Jie ZHANG,Yang ZOU. Experimental research on influence of abnormal shape on heat transfer performance of copper-water heat pipe[J]. CIESC Journal, 2021, 72(10): 5132-5141.
15 | Du J F, Song W W, Wang S B, et al. Radiation shielding design for a heat pipe cooled lunar surface reactor[J]. Manned Spaceflight, 2016, 22(4): 423-428. |
16 | 王傲, 申凤阳, 胡古, 等. 热管空间核反应堆电源的研究进展[J]. 核技术, 2020, 43(6): 9-15. |
Wang A, Shen F Y, Hu G, et al. A survey of heatpipe space nuclear reactor power supply[J]. Nuclear Techniques, 2020, 43(6): 9-15. | |
17 | 李华琪, 江新标, 陈立新, 等. 空间堆热管输热能力分析[J]. 原子能科学技术, 2015, 49(1): 89-95. |
Li H Q, Jiang X B, Chen L X, et al. Heat transfer capability analysis of heat pipe for space reactor[J]. Atomic Energy Science and Technology, 2015, 49(1): 89-95. | |
18 | 洪兵. 锂热管冷却空间反应堆堆芯物理特性研究[D]. 合肥: 中国科学技术大学, 2018. |
Hong B. Core physics study of lithium heat-pipe cooled space reactor[D]. Hefei: University of Science and Technology of China, 2018. | |
19 | Wang J Y. Experimental investigation of the transient thermal performance of a bent heat pipe with grooved surface[J]. Applied Energy, 2009, 86(10): 2030-2037. |
20 | Jiang L L, Tang Y, Pan M Q. Effects of bending on heat transfer performance of axial micro-grooved heat pipe[J]. Journal of Central South University, 2011, 18(2): 580-586. |
21 | 徐红艳, 李忠, 沈同俊, 等. 弯曲热管传热性能的试验研究[C]//上海市制冷学会2009年学术年会. 上海, 2009: 67-69. |
Xu H Y, Li Z, Shen T J, et al. Experimental study on thermal characteristics of bending heat pipes[C]//Proceedings of the 2009 Annual Conference of Shanghai Institute of Refrigeration. Shanghai: Shanghai Institute of Refrigeration, 2009: 67-69. | |
22 | 陶汉中, 张红, 庄骏. 小型微槽道热管90°弯曲前后传热性能比较[J]. 宇航学报, 2008, 29(2): 722-728. |
1 | 马同泽, 侯增祺, 吴文銧. 热管[M]. 北京: 科学出版社, 1983: 90. |
Ma T Z, Hou Z Q, Wu W G. Heat Pipe[M]. Beijing: Science Press, 1983: 90. | |
2 | 庄骏, 张红. 热管技术及其工程应用[M]. 北京: 化学工业出版社, 2000: 5. |
Zhuang J, Zhang H. Heat Pipe Technology and Engineering Application[M]. Beijing: Chemical Industry Press, 2000: 5. | |
3 | Putra N, Ariantara B, Pamungkas R A. Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application[J]. Applied Thermal Engineering, 2016, 99: 784-789. |
4 | Li J, Li X P, Zhou G H, et al. Development and evaluation of a supersized aluminum flat plate heat pipe for natural cooling of high power telecommunication equipment[J]. Applied Thermal Engineering, 2021, 184: 116278. |
5 | Mei N, Xu X M, Li R Z. Heat dissipation analysis on the liquid cooling system coupled with a flat heat pipe of a lithium-ion battery[J]. ACS Omega, 2020, 5(28): 17431-17441. |
6 | Feng C, Gibbons M J, Marengo M, et al. A novel ultra-large flat plate heat pipe manufactured by thermal spray[J]. Applied Thermal Engineering, 2020, 171: 115030. |
7 | Xin F, Ma T, Wang Q W. Thermal performance analysis of flat heat pipe with graded mini-grooves wick[J]. Applied Energy, 2018, 228: 2129-2139. |
8 | Chang Y W, Cheng C H, Wang J C, et al. Heat pipe for cooling of electronic equipment[J]. Energy Conversion and Management, 2008, 49(11): 3398-3404. |
9 | 王红涛, 李正茂, 时振堂. 热管技术在烟气余热利用上的应用研究[J]. 当代化工, 2015, 44(6): 1324-1326. |
Wang H T, Li Z M, Shi Z T. Application of the heat pipe technology in waste heat recovery of flue gas[J]. Contemporary Chemical Industry, 2015, 44(6): 1324-1326. | |
10 | 王芹, 黄兴意, 孙艳, 等. 热管技术在低温废水余热回收中的应用[J]. 广东化工, 2014, 41(23): 86-87. |
Wang Q, Huang X Y, Sun Y, et al. Application of heat pipe technology in low temperature wastewater heat recovery[J]. Guangdong Chemical Industry, 2014, 41(23): 86-87. | |
11 | Gedik E, Yılmaz M, Kurt H. Experimental investigation on the thermal performance of heat recovery system with gravity assisted heat pipe charged with R134a and R410A[J]. Applied Thermal Engineering, 2016, 99: 334-342. |
12 | 向俊. 重力热管在燃气锅炉供热系统烟气余热回收中的应用研究[D]. 西安: 西安工程大学, 2019. |
Xiang J. Application of gravity heat pipe in flue gas waste heat recovery of gas boiler heating system[D]. Xi'an: Xi'an Polytechnic University, 2019. | |
13 | 刘昱, 张辛, 闵敏. 热管技术在余热回收方面的应用分析[J]. 产业科技创新, 2020, 2(33): 75-76. |
Liu Y, Zhang X, Min M. Application analysis of heat pipe technology in waste heat recovery[J]. Industrial Technology Innovation, 2020, 2(33): 75-76. | |
14 | Patel V K. An efficient optimization and comparative analysis of ammonia and methanol heat pipe for satellite application[J]. Energy Conversion and Management, 2018, 165: 382-395. |
15 | 杜金峰, 宋旺旺, 王三丙, 等. 热管冷却型月球堆的辐射屏蔽设计研究[J]. 载人航天, 2016, 22(4): 423-428. |
22 | Tao H Z, Zhang H, Zhuang J. Comparison of the heat transfer performance in an AGHP with and without 90° bend[J]. Journal of Astronautics, 2008, 29(2): 722-728. |
23 | 李新禹, 李朋, 韩忠贤, 等. 弯曲角度对扁平热管传热性能的影响[J]. 储能科学与技术, 2020, 9(3): 840-847. |
Li X Y, Li P, Han Z X, et al. Effect of bending angle on heat transfer performance of flat heat pipe[J]. Energy Storage Science and Technology, 2020, 9(3): 840-847. | |
24 | Sangpab N, Kimura N, Terdtoon P, et al. Combined effect of bending and flattening on heat transfer performance of cryogenic sintered-wick heat pipe[J]. Applied Thermal Engineering, 2019, 148: 878-885. |
25 | Peeples M E, Calhoun L D. Fabrication and comparative performance of three variable conductance heat pipe concepts[C]//ASME Paper, 1977. |
26 | 黄婉珏, 徐博, 周翀, 等. 373 MW熔盐堆非能动余热排出系统换热元件的优化设计[J]. 核技术, 2019, 42(7): 59-68. |
Huang W J, Xu B, Zhou C, et al. Optimal design of the bayonet cooling tube in the passive decay heat removal system for the 373 MW molten salt reactor[J]. Nuclear Techniques, 2019, 42(7): 59-68. | |
27 | 刘宇生, 许超, 攸国顺, 等. 非能动核电厂全厂断电事故自然循环现象研究[J]. 核技术, 2018, 41(11): 77-83. |
Liu Y S, Xu C, You G S, et al. Study on natural circulation phenomena of passive nuclear power plant under station blackout accident[J]. Nuclear Techniques, 2018, 41(11): 77-83. | |
28 | Wang C L, Qin H, Zhang D L, et al. Numerical investigation of natural convection characteristics of a heat pipe-cooled passive residual heat removal system for molten salt reactors[J]. Nuclear Science and Techniques, 2020, 31(7): 1-9. |
29 | Walker K L, Tarau C, Anderson W G. Grooved and self-venting arterial heat pipes for space fission power systems[J]. Heat Pipe Science and Technology, an International Journal, 2014, 5(1/2/3/4): 507-514. |
30 | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
31 | Prandtl L. Essentials of Fluid Dynamics[M]. Germany: Hafner Publishing Company, 1952: 192-200. |
32 | 徐小恒, 莫华均, 李东仓, 等. 铑自给能探测器延迟信号数字处理算法与实验研究[J]. 核动力工程, 2019, 40(4): 134-138. |
Xu X H, Mo H J, Li D C, et al. Experimental research on digital processing algorithm for RSPND delay signal[J]. Nuclear Power Engineering, 2019, 40(4): 134-138. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[3] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[4] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[5] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[6] | 苏伟, 马东旭, 金旭, 刘忠彦, 张小松. 表面润湿性对霜层传递特性影响可视化实验研究[J]. 化工学报, 2023, 74(S1): 122-131. |
[7] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[8] | 蒋祎璠, 刘蕾, 赵耀, 代彦军. UVLED光学元件液冷散热系统性能研究[J]. 化工学报, 2023, 74(S1): 154-160. |
[9] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[10] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[11] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[12] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[13] | 申利梅, 胡博兴, 谢雨霏, 曾伟豪, 张晓屿. 超薄平板热管传热性能的实验研究[J]. 化工学报, 2023, 74(S1): 198-205. |
[14] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[15] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||