化工学报 ›› 2022, Vol. 73 ›› Issue (2): 653-662.DOI: 10.11949/0438-1157.20211034
韩昌亮1(),辛镜青1,于广滨1,刘俊秀2,许麒澳1,姚安卡1,尹鹏1
收稿日期:
2021-07-23
修回日期:
2021-12-20
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
韩昌亮
作者简介:
韩昌亮(1987—),男,博士,讲师,基金资助:
Changliang HAN1(),Jingqing XIN1,Guangbin YU1,Junxiu LIU2,Qi'ao XU1,Anka YAO1,Peng YIN1
Received:
2021-07-23
Revised:
2021-12-20
Online:
2022-02-05
Published:
2022-02-18
Contact:
Changliang HAN
摘要:
利用实验与数值模拟相结合的方法研究了超临界氮气(SCN2)三维热流场特性,在用实验数据验证数值方法可靠性基础上,分析了压力(3.6~7 MPa)和质量流速[800~1200 kg/(m2?s)]对SCN2对流传热特性的影响,揭示了微通道圆管不同圆周方向上SCN2热流场规律。结果表明:在低压力和高质量流速下,同一轴向位置处,径向内壁温最大值出现在圆管90°处;质量流速越大,内壁温最大值和对流传热系数最小值由圆管180°向90°处发生了转移;当浮升力系数Gr*/Re2>1时,浮升力有利于强化圆管底部区域流体传热能力;基于获得的数据,提出了一个新的适合预测微通道圆管内SCN2对流传热特性的无量纲换热关联式,预测误差小于20%。研究结果为微通道换热器优化设计提供了参考。
中图分类号:
韩昌亮, 辛镜青, 于广滨, 刘俊秀, 许麒澳, 姚安卡, 尹鹏. 微通道内超临界氮气三维热流场实验与数值模拟[J]. 化工学报, 2022, 73(2): 653-662.
Changliang HAN, Jingqing XIN, Guangbin YU, Junxiu LIU, Qi'ao XU, Anka YAO, Peng YIN. Experimental and numerical simulation on three-dimensional heat flow field of supercritical nitrogen in micro-channel[J]. CIESC Journal, 2022, 73(2): 653-662.
图1 实验装置流程图1—离心式鼓风机;2—玻璃转子流量计;3—甲烷燃料罐;4—燃烧器;5—计算机;6—水箱;7—Pt100热电阻;8—压力变送器;9—高压阀门;10—质量流量计;11—高速摄影机;12—增压泵;13—LN2杜瓦罐
Fig.1 Flow chart of experimental device
实验编号 | 入口温度/K | 入口压力/MPa | 质量流速/ (kg/(m2?s)) | 出口温度/K | 对流传热系数/ (W/(m2?K)) |
---|---|---|---|---|---|
Case 1 | 93.72 | 4.52 | 60.13 | 285.3 | 100.65 |
Case 2 | 93.31 | 4.51 | 71.05 | 283.4 | 135.85 |
Case 3 | 93.56 | 4.52 | 80.15 | 281.3 | 155.36 |
Case 4 | 93.46 | 4.53 | 95.13 | 279.7 | 183.31 |
Case 5 | 93.76 | 4.52 | 100.34 | 277.3 | 205.61 |
表1 SCN2对流传热特性实验参数
Table 1 Convective heat transfer characteristic experimental parameters of SCN2
实验编号 | 入口温度/K | 入口压力/MPa | 质量流速/ (kg/(m2?s)) | 出口温度/K | 对流传热系数/ (W/(m2?K)) |
---|---|---|---|---|---|
Case 1 | 93.72 | 4.52 | 60.13 | 285.3 | 100.65 |
Case 2 | 93.31 | 4.51 | 71.05 | 283.4 | 135.85 |
Case 3 | 93.56 | 4.52 | 80.15 | 281.3 | 155.36 |
Case 4 | 93.46 | 4.53 | 95.13 | 279.7 | 183.31 |
Case 5 | 93.76 | 4.52 | 100.34 | 277.3 | 205.61 |
编号 | 入口压力/MPa | 质量流速/ (kg/(m2?s)) | 入口温度/K | 外壁面热通量/(W/m2) |
---|---|---|---|---|
Case a | 3.6 | 800 | 100 | 72000 |
Case b | 3.6 | 1200 | 100 | 72000 |
Case c | 7 | 800 | 100 | 72000 |
表2 数值模拟工况
Table 2 Numerical simulation conditions
编号 | 入口压力/MPa | 质量流速/ (kg/(m2?s)) | 入口温度/K | 外壁面热通量/(W/m2) |
---|---|---|---|---|
Case a | 3.6 | 800 | 100 | 72000 |
Case b | 3.6 | 1200 | 100 | 72000 |
Case c | 7 | 800 | 100 | 72000 |
Model | Equation |
---|---|
Dittus-Boelter[ | |
Tatsumoto et al.[ | |
Zhao et al.[ |
表3 常用预测SCN2对流传热无量纲换热关联式
Table 3 Common dimensionless correlations for predicting convective heat transfer of SCN2
Model | Equation |
---|---|
Dittus-Boelter[ | |
Tatsumoto et al.[ | |
Zhao et al.[ |
1 | 张博, 王亚雄. 热电制冷液体冷却散热器的实验研究[J]. 化工学报, 2014, 65(9): 3441-3446. |
Zhang B, Wang Y X. An experimental investigation on a novel liquid thermoelectric cooling device[J]. CIESC Journal, 2014, 65(9): 3441-3446. | |
2 | Zhou J Z, Cao X L, Zhang N, et al. Micro-channel heat sink: a review[J]. Journal of Thermal Science, 2020, 29(6): 1431-1462. |
3 | Li X F, Zhong F Q, Fan X J, et al. Study of turbulent heat transfer of aviation kerosene flows in a curved pipe at supercritical pressure[J]. Applied Thermal Engineering, 2010, 30(13): 1845-1851. |
4 | 袁雪. 纳米流体微通道散热器强化换热特性及其应用研究[D]. 呼和浩特:内蒙古工业大学, 2020. |
Yuan X. Investigation on thermal performance and application of micro-channel heat sink using nanofluid[D]. Hohhot: Inner Mongolia University of Technology, 2020. | |
5 | 谷家扬, 魏世松, 景宝金, 等. 紧凑高效微通道换热器流动与换热特性研究进展[J]. 江苏科技大学学报(自然科学版), 2020, 34(6): 42-49. |
Gu J Y, Wei S S, Jing B J, et al. Progress in the research of flow and heat transfer characteristics of printed circuit heat exchangers[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2020, 34(6): 42-49. | |
6 | 徐肖肖, 张世杰, 李怡, 等. 制冷剂在微通道扁平T型管内的气液两相流相分配特性研究[J]. 化工学报, 2021, 72(4): 2057-2064. |
Xu X X, Zhang S J, Li Y, et al. Study on phase distribution characteristics of gas-liquid two-phase flow in micro-channel flat T-junction[J]. CIESC Journal, 2021, 72(4): 2057-2064. | |
7 | 刘冉, 夏国栋, 杜墨. 三角形微通道内纳米流体流动与换热特性[J]. 化工学报, 2016, 67(12): 4936-4943. |
Liu R, Xia G D, Du M. Characteristics of convective heat transfer in triangular microchannel heat sink using different nanofluids[J]. CIESC Journal, 2016, 67(12): 4936-4943. | |
8 | 杜文静, 赵浚哲, 张立新, 等. 换热器结构发展综述及展望[J]. 山东大学学报(工学版), 2021, 51(5): 76-83. |
Du W J, Zhao J Z, Zhang L X, et al. Review and prospect of the development of heat exchanger structure[J]. Journal of Shandong University (Engineering Science), 2021, 51(5): 76-83. | |
9 | 袁旭东, 贾磊, 周到, 等. 微通道临界热通量的基础理论与提升技术研究进展[J]. 化工学报, 2021, 72(4): 1796-1814. |
Yuan X D, Jia L, Zhou D, et al. Research progress on basic theory and improvement technology for critical heat flux of microchannel[J]. CIESC Journal, 2021, 72(4): 1796-1814. | |
10 | Lashkarbolooki M, Vaezian A, Hezave A Z, et al. Experimental investigation of the influence of supercritical carbon dioxide and supercritical nitrogen injection on tertiary live-oil recovery[J]. The Journal of Supercritical Fluids, 2016, 117: 260-269. |
11 | Cheng H, Ju Y L, Fu Y Z. Experimental and simulation investigation on heat transfer characteristics of supercritical nitrogen in a new rib tube of open rack vaporizer[J]. International Journal of Refrigeration, 2020, 111: 103-112. |
12 | Wang Y, Ren J J, Wang C, et al. Mechanism analysis of the buoyancy effects on heat transfer of supercritical nitrogen in horizontal serpentine tube[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119417. |
13 | Zhao Z C, Zhang Y, Chen X D, et al. Experimental and numerical investigation of thermal-hydraulic performance of supercritical nitrogen in airfoil fin printed circuit heat exchanger[J]. Applied Thermal Engineering, 2020, 168: 114829. |
14 | Cheng H, Yin L, Ju Y L, et al. Experimental investigation on heat transfer characteristics of supercritical nitrogen in a heated vertical tube[J]. International Journal of Thermal Sciences, 2020, 152: 106327. |
15 | 代宝民, 李敏霞, 吕佳桐, 等. 超临界CO2/R41小通道内的换热特性[J]. 化工学报, 2015, 66(3): 924-931. |
Dai B M, Li M X, Lü J T, et al. Heat transfer characteristics of supercritical CO2/R41 flowing in mini-channel[J]. CIESC Journal, 2015, 66(3): 924-931. | |
16 | 王珂, 谢金, 刘遵超, 等. 超临界二氧化碳在微细管内的换热特性[J]. 化工学报, 2014, 65: 323-327. |
Wang K, Xie J, Liu Z C, et al. Heat transfer characteristics of supercritical carbon dioxide in a micro-capillary tube[J]. CIESC Journal, 2014, 65: 323-327. | |
17 | 宋丹, 蒋庆峰, 冯国增, 等. 超临界LNG在错列S形翅片微通道的流动传热特性研究[J]. 低温与超导, 2021, 49(1): 16-21. |
Song D, Jiang Q F, Feng G Z, et al. Study on the flow and heat transfer characteristics of supercritical LNG in staggered S-shaped fin channels[J]. Cryogenics & Superconductivity, 2021, 49(1): 16-21. | |
18 | Khalesi J, Sarunac N, Razzaghpanah Z. Supercritical CO2 conjugate heat transfer and flow analysis in a rectangular microchannel subject to uniformly heated substrate wall[J]. Thermal Science and Engineering Progress, 2020, 19: 100596. |
19 | Zhu X J, Lyu Z H, Yu X, et al. Heat transfer enhancement of supercritical nitrogen flowing downward in a small vertical tube: evaluation of system parameter effects[J]. Journal of Thermal Science, 2020, 29(6): 1487-1503. |
20 | Fu B R, Lin W J. Supercritical heat transfer of NOVEC 649 refrigerant in horizontal minichannels[J]. International Communications in Heat and Mass Transfer, 2020, 117: 104740. |
21 | Rowinski M K, Zhao J Y, White T J, et al. Numerical investigation of supercritical water flow in a vertical pipe under axially non-uniform heat flux[J]. Progress in Nuclear Energy, 2017, 97: 11-25. |
22 | Shang Z, Chen S. Numerical investigation of diameter effect on heat transfer of supercritical water flows in horizontal round tubes[J]. Applied Thermal Engineering, 2011, 31(4): 573-581. |
23 | 张宇, 姜培学, 石润富, 等. 竖直圆管中超临界压力CO2在低Re数下对流换热研究[J]. 工程热物理学报, 2008, 29(1): 118-120. |
Zhang Y, Jiang P X, Shi R F, et al. Convection heat transfer of CO2 at supercritical pressures in a vertical tube at low Reynolds numbers[J]. Journal of Engineering Thermophysics, 2008, 29(1): 118-120. | |
24 | 范辰浩, 王海军, 宋子琛, 等. 小管径超临界流体传热恶化特性研究[J]. 工程热物理学报, 2018, 39(9): 2032-2039. |
Fan C H, Wang H J, Song Z C, et al. Investigation on heat transfer deterioration characteristics of supercritical fluid in small diameter tube[J]. Journal of Engineering Thermophysics, 2018, 39(9): 2032-2039. | |
25 | 王军辉, 郭鹏程, 颜建国, 等. 水平小圆管内超临界二氧化碳对流传热特性的试验研究[J]. 西安理工大学学报, 2018, 34(3): 272-277. |
Wang J H, Guo P C, Yan J G, et al. Experimental studies on convection heat transfer of supercritical carbon dioxide in a horizontal circular mini-tube[J]. Journal of Xi'an University of Technology, 2018, 34(3): 272-277. | |
26 | Han C L, Ren J J, Wang Y Q, et al. Experimental investigation on fluid flow and heat transfer characteristics of a submerged combustion vaporizer[J]. Applied Thermal Engineering, 2017, 113: 529-536. |
27 | Han C L, Ren J J, Wang Y Q, et al. Experimental studies of shell-side fluid flow and heat transfer characteristics in a submerged combustion vaporizer[J]. International Journal of Heat and Mass Transfer, 2016, 101: 436-444. |
28 | 王英杰. 超临界流体传热特性研究综述[J]. 科技导报, 2012, 30(33): 74-79. |
Wang Y J. Review on supercritical fluid heat transfer characteristics[J]. Science & Technology Review, 2012, 30(33): 74-79. | |
29 | Metais B, Eckert E R G. Forced, mixed, and free convection regimes[J]. Journal of Heat Transfer, 1964, 86(2): 295-296. |
30 | Bazargan M, Fraser D, Chatoorgan V. Effect of buoyancy on heat transfer in supercritical water flow in a horizontal round tube[J]. Journal of Heat Transfer, 2005, 127(8): 897-902. |
31 | Dittus F W, Boelter L M K. Heat Transfer in Automobile Radiators of the Tubular Type[M]. US: Pergamon Press, 1985. |
32 | Tatsumoto H, Shirai Y, Hata K, et al. Forced convection heat transfer of subcooled liquid nitrogen in a vertical tube[J]. Journal of Physics: Conference Series, 2010, 234(3): 032057. |
33 | Zhao Z C, Zhang X, Zhao K, et al. Numerical investigation on heat transfer and flow characteristics of supercritical nitrogen in a straight channel of printed circuit heat exchanger[J]. Applied Thermal Engineering, 2017, 126: 717-729. |
[1] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[4] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[5] | 张雪婷, 胡激江, 赵晶, 李伯耿. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351. |
[6] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[7] | 杨星宇, 马优, 朱春英, 付涛涛, 马友光. 梳状并行微通道内液液分布规律研究[J]. 化工学报, 2023, 74(2): 698-706. |
[8] | 项星宇, 王忠东, 董艳鹏, 李守川, 朱春英, 马友光, 付涛涛. 微通道内屈服应力型流体的流变特性及多相流研究进展[J]. 化工学报, 2023, 74(2): 546-558. |
[9] | 盛林, 昌宇, 邓建, 骆广生. 阶梯式T型微通道内有序气泡群的形成和流动特性研究[J]. 化工学报, 2023, 74(1): 416-427. |
[10] | 侯跃辉, 刘璇, 廉应江, 韩梅, 尧超群, 陈光文. 超声微反应器内三硝基间苯三酚合成工艺研究[J]. 化工学报, 2022, 73(8): 3597-3607. |
[11] | 董宜放, 于樱迎, 胡学功, 裴刚. 电场对竖直微槽润湿及毛细流动特性影响[J]. 化工学报, 2022, 73(7): 2952-2961. |
[12] | 许非石, 杨丽霞, 陈光文. 超声微反应器内气液传质过程的介尺度强化机制[J]. 化工学报, 2022, 73(6): 2552-2562. |
[13] | 王忠东, 朱春英, 马友光, 付涛涛. 并行微通道内液液两相流及介尺度效应[J]. 化工学报, 2022, 73(6): 2563-2572. |
[14] | 殷亚然, 朱星星, 张先明, 朱春英, 付涛涛, 马友光. 微通道内醇胺/离子液体复配水溶液吸收CO2的传质特性[J]. 化工学报, 2022, 73(5): 1930-1939. |
[15] | 黄志豪, 李光熙, 唐桂华, 李小龙, 范元鸿. 单侧加热方形通道内超临界水传热研究[J]. 化工学报, 2022, 73(4): 1523-1533. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||