化工学报 ›› 2022, Vol. 73 ›› Issue (5): 1930-1939.doi: 10.11949/0438-1157.20211767

• 流体力学与传递现象 • 上一篇    下一篇

微通道内醇胺/离子液体复配水溶液吸收CO2的传质特性

殷亚然1(),朱星星1,张先明1,朱春英2,付涛涛2,马友光2()   

  1. 1.纺织纤维材料与加工技术国家地方联合工程实验室,浙江理工大学材料科学与工程学院,浙江 杭州 310018
    2.化学工程联合国家重点实验室,天津大学化学工程学院,天津 300072
  • 收稿日期:2021-12-14 修回日期:2022-03-02 出版日期:2022-05-05 发布日期:2022-05-24
  • 通讯作者: 马友光 E-mail:yryin@zstu.edu.cn;ygma@tju.edu.cn
  • 作者简介:殷亚然(1990—),女,博士,讲师,yryin@zstu.edu.cn
  • 基金资助:
    浙江省自然科学基金项目(LQ21B060009);国家自然科学基金项目(22008220);浙江理工大学科研业务费专项(2021Q014)

Mass transfer characteristics of CO2 absorption in alkanolamine/ionic liquid hybrid aqueous solutions in a microchannel

Yaran YIN1(),Xingxing ZHU1,Xianming ZHANG1,Chunying ZHU2,Taotao FU2,Youguang MA2()   

  1. 1.National Engineering Laboratory for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
    2.State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received:2021-12-14 Revised:2022-03-02 Published:2022-05-05 Online:2022-05-24
  • Contact: Youguang MA E-mail:yryin@zstu.edu.cn;ygma@tju.edu.cn

摘要:

研究了微通道内醇胺[单乙醇胺(MEA)和甲基二乙醇胺(MDEA)]与离子液体[1-丁基-3-甲基咪唑四氟硼酸([Bmim][BF4])和1-羟乙基-3-甲基咪唑甘氨酸([C2OHmim][GLY])]复配水溶液吸收CO2的传质特性。考察了醇胺/离子液体浓度比(cAAcIL)对液相体积传质系数(kLa)的影响,发现kLa随反应速率的增大而增大。为进一步阐释复配水溶液吸收CO2的传质机理,分析了比表面积、扩散速率、增强因子和液弹循环对传质速率的影响。结果表明,四种复配溶液中,反应速率和循环频率(fcir)分别在低流率和高流率下对传质速率起主导作用。kLa可表示为fcir的函数,低气相流率下kLafcir呈线性关系,斜率与反应速率成正相关,高气相流率下,液弹循环因膜弹传递困难而对整体传质速率的影响减弱,kLafcir呈指数关系,幂律指数小于1。

关键词: 微通道, 醇胺, 离子液体, 气液两相流, 传质

Abstract:

The absorption performance of CO2 by blends of alkanolamines [monoethanolamine (MEA) and methyldiethanolamine (MDEA)] and ionic liquids [1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) and 1-hydroxyethyl-3-methylimidazolium glycine ([C2OHmim][GLY])] was investigated in the microchannel. The influence of the concentration ratio of alkanolamine/ionic liquid (cAAcIL) on the liquid-phase volumetric mass transfer coefficient (kLa) was highlighted. The results show that kLa increases with the increase of reaction rate for all solutions. In order to further elucidate the mass transfer mechanism of CO2 absorption by the compound aqueous solution, the effects of specific surface area, diffusion rate, enhancement factor and liquid-elastic circulation on the mass transfer rate were analyzed. The results show that the overall mass transfer rate is significantly controlled by chemical reaction rate at low flow rates, and by circulation frequency (fcir) at high flow rates. Nevertheless, kLa can still be expressed as a mathematical function of fcir. kLa is linearly related with fcir at low gas flow rates, and the slope is positively related with the reaction rate. At high gas flow rates, the effect of circulation on mass transfer rate becomes weak due to the difficulty of film-slug exchange. In this case, kLa follows a power-law relation with fcir whose exponent is less than 1.

Key words: microchannels, alkanolamine, ionic liquid, gas-liquid flow, mass transfer

中图分类号: 

  • TQ 021.4

表1

醇胺/离子液体复配水溶液的物理性质"

溶液cAAcIL密度ρL/(g/cm3)黏度ηL/(mPa·s)表面张力σ/(mN/m)
MEA/[Bmim][BF4]5∶51.01691.00037.84
6∶41.01350.98337.73
7∶31.01000.96237.40
8∶21.00640.95037.16
9∶11.00290.93436.82
10∶00.99930.95239.77
MEA/[C2OHmim][GLY]5∶51.02141.07837.39
6∶41.01701.04137.90
7∶31.01251.00838.45
8∶21.00820.96438.95
9∶11.00370.93039.45
MDEA/[Bmim][BF4]5∶51.01871.04535.76
6∶41.01821.08335.74
7∶31.01551.10535.71
8∶21.01291.11435.68
9∶11.01011.14135.63
10∶01.00661.15538.52
MDEA/[C2OHmim][GLY]5∶51.02541.21637.95
6∶41.02171.21538.36
7∶31.01851.21339.15
8∶21.01461.20839.65
9∶11.01101.20140.44

图1

实验装置流程和微通道结构示意图"

图2

气泡初始长度的稳定性分析"

图3

微通道中气液弹状流示意图"

图4

液相浓度比对液相体积传质系数(kLa)的影响"

图5

液相浓度比对比表面积的影响"

图6

液相浓度比对气液两相流的影响"

图7

液相传质系数(kL)随气相流率的变化"

图8

液相浓度比对气泡初始长度和生成时间的影响"

图9

增强因子(E)随气相流率的变化"

图10

液相浓度比对循环频率的影响"

图11

循环频率与液相体积传质系数的关系"

表2

不同复配溶液的拟合系数α和β"

cAAcILMEA/ [Bmim][BF4]MEA/ [C2OHmim][GLY]MDEA/[Bmim][BF4]MDEA/ [C2OHmim][GLY]
αβαβαβαβ
5∶50.0293.6920.0575.3200.0191.1400.0414.336
6∶40.0343.7400.0595.1110.0171.6920.0413.561
7∶30.0433.7760.0634.6770.0191.6620.0333.519
8∶20.0473.6360.0584.9170.0221.3060.0313.067
9∶10.0504.1910.0604.9620.0231.2560.0272.582
10∶00.0594.2920.0594.2920.0221.4590.0201.693
1 Yu C H, Huang C H, Tan C S. A review of CO2 capture by absorption and adsorption[J]. Aerosol and Air Quality Research, 2012, 12(5): 745-769.
2 林海周, 裴爱国, 方梦祥. 燃煤电厂烟气二氧化碳胺法捕集工艺改进研究进展[J]. 化工进展, 2018, 37(12): 4874-4886.
Lin H Z, Pei A G, Fang M X. Progress of research on process modifications for amine solvent-based post combustion CO2 capture from coal-fired power plant[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4874-4886.
3 张卫风, 许元龙, 王秋华. CO2醇胺富液低能耗再生研究进展[J]. 化工进展, 2021, 40(8): 4497-4507.
Zhang W F, Xu Y L, Wang Q H. Progress of research on regeneration of rich alkanolamine solution with low energy consumption[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4497-4507.
4 Veawab A, Tontiwachwuthikul P, Chakma A. Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions[J]. Industrial & Engineering Chemistry Research, 1999, 38(10): 3917-3924.
5 MacDowell N, Florin N, Buchard A, et al. An overview of CO2 capture technologies[J]. Energy & Environmental Science, 2010, 3(11): 1645.
6 Bates E D, Mayton R D, Ntai I, et al. CO2 capture by a task-specific ionic liquid[J]. Journal of the American Chemical Society, 2002, 124(6): 926-927.
7 Zhang Y Y, Ji X Y, Xie Y J, et al. Screening of conventional ionic liquids for carbon dioxide capture and separation[J]. Applied Energy, 2016, 162: 1160-1170.
8 Liao H Y, Gao H X, Xu B, et al. Mass transfer performance studies of aqueous blended DEEA-MEA solution using orthogonal array design in a packed column[J]. Separation and Purification Technology, 2017, 183: 117-126.
9 李孟盈, 吕春捷, 徐立华, 等. 离子液体-醇胺水溶液捕集CO2研究进展[J]. 现代化工, 2021, 41(2): 70-74.
Li M Y, Lyu C J, Xu L H, et al. Research progress in CO2 capture by ionic liquids-alkanolamine aqueous solutions[J]. Modern Chemical Industry, 2021, 41(2): 70-74.
10 夏裴文, 王强, 张鹏军, 等. 氨基酸离子液体-MDEA复配液对CO2的吸收[J]. 离子交换与吸附, 2019, 35(2): 123-130.
Xia P W, Wang Q, Zhang P J, et al. Absorptin of CO2 by amino acid ionic liquid-MDEA complex solution[J]. Ion Exchange and Adsorption. 2019, 35(2): 123-130.
11 Ahmady A, Hashim M A, Aroua M K. Kinetics of carbon dioxide absorption into aqueous MDEA +[bmim][BF 4] solutions from 303 to 333 K[J]. Chemical Engineering Journal, 2012, 200/201/202: 317-328.
12 Lu B H, Wang X Q, Xia Y F, et al. Kinetics of carbon dioxide absorption into mixed aqueous solutions of MEA + [Bmim][BF4] using a double stirred cell[J]. Energy & Fuels, 2013, 27(10): 6002-6009.
13 Lu B H, Jin J J, Zhang L, et al. Absorption of carbon dioxide into aqueous blend of monoethanolamine and 1-butyl-3-methylimidazolium tetrafluoroborate[J]. International Journal of Greenhouse Gas Control, 2012, 11: 152-157.
14 Lv B H, Shi Y, Sun C, et al. CO2 capture by a highly-efficient aqueous blend of monoethanolamine and a hydrophilic amino acid ionic liquid[C2OHmim][Gly][J]. Chemical Engineering Journal, 2015, 270: 372-377.
15 Lv B H, Sun C, Liu N, et al. Mass transfer and kinetics of CO2 absorption into aqueous monoethanolamine/1-hydroxyethy-3-methyl imidazolium glycinate solution[J]. Chemical Engineering Journal, 2015, 280: 695-702.
16 Exposito A J, Bai Y, Tchabanenko K, et al. Process intensification of continuous-flow imine hydrogenation in catalyst-coated tube reactors[J]. Industrial & Engineering Chemistry Research, 2019, 58(11): 4433-4442.
17 Sansotera M, Baggioli A, Ieffa S, et al. Catalytic microreactor with electrodeposited hierarchically nanostructured nickel coatings for gas-phase fluorination reactions[J]. Journal of Fluorine Chemistry, 2018, 205: 22-29.
18 Liu S E, Li G X, Shang M J, et al. Hydrodynamics study of a fast liquid-liquid oxidation process with in situ gas production in microreactors[J]. AIChE Journal, 2021, 67(11): e17362.
19 丁云成, 王法军, 艾宁, 等. 微反应器内连续重氮化/偶合反应进展[J]. 化工学报, 2018, 69(11): 4542-4552.
Ding Y C, Wang F J, Ai N, et al. Research progress on continuous diazotization/azo-coupling reaction in microreactors[J]. CIESC Journal, 2018, 69(11): 4542-4552.
20 Yao C Q, Zhu K, Liu Y Y, et al. Intensified CO2 absorption in a microchannel reactor under elevated pressures[J]. Chemical Engineering Journal, 2017, 319: 179-190.
21 尧超群, 乐军, 赵玉潮, 等. 微通道内气-液弹状流动及传质特性研究进展[J]. 化工学报, 2015, 66(8): 2759-2766.
Yao C Q, Yue J, Zhao Y C, et al. Review on flow and mass transfer characteristics of gas-liquid slug flow in microchannels[J]. CIESC Journal, 2015, 66(8): 2759-2766.
22 Berčič G, Pintar A. The role of gas bubbles and liquid slug lengths on mass transport in the Taylor flow through capillaries[J]. Chemical Engineering Science, 1997, 52(21/22): 3709-3719.
23 van Baten J M, Krishna R. CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries[J]. Chemical Engineering Science, 2004, 59(12): 2535-2545.
24 Sobieszuk P, Pohorecki R, Cygański P, et al. Determination of the interfacial area and mass transfer coefficients in the Taylor gas-liquid flow in a microchannel[J]. Chemical Engineering Science, 2011, 66(23): 6048-6056.
25 Zhang P, Yao C Q, Ma H Y, et al. Dynamic changes in gas-liquid mass transfer during Taylor flow in long serpentine square microchannels[J]. Chemical Engineering Science, 2018, 182: 17-27.
26 Yao C Q, Zhao Y C, Zheng J, et al. The effect of liquid viscosity and modeling of mass transfer in gas-liquid slug flow in a rectangular microchannel[J]. AIChE Journal, 2020, 66(5): e16934.
27 Butler C, Lalanne B, Sandmann K, et al. Mass transfer in Taylor flow: transfer rate modelling from measurements at the slug and film scale[J]. International Journal of Multiphase Flow, 2018, 105: 185-201.
28 Butler C, Cid E, Billet A M. Modelling of mass transfer in Taylor flow: investigation with the PLIF-I technique[J]. Chemical Engineering Research and Design, 2016, 115: 292-302.
29 Abiev R S, Butler C, Cid E, et al. Mass transfer characteristics and concentration field evolution for gas-liquid Taylor flow in milli channels[J]. Chemical Engineering Science, 2019, 207: 1331-1340.
30 张筱丽, MDEA/氨基酸功能性离子液体混合水溶液吸收CO 2 的研究[D]. 杭州: 浙江大学, 2016.
Zhang X L. CO2 absorption into the mixed aqueous solution of MDEA and amino acid ionic liquid[D]. Hangzhou: Zhejiang University, 2016.
31 Last W, Stichlmair J. Determination of mass transfer parameters by means of chemical absorption[J]. Chemical Engineering & Technology, 2002, 25(4): 385-391.
32 Kockmann N, Karlen S, Girard C, et al. Liquid-liquid test reactions to characterize two-phase mixing in microchannels[J]. Heat Transfer Engineering, 2013, 34(2/3): 169-177.
33 Shao N, Gavriilidis A, Angeli P. Mass transfer during Taylor flow in microchannels with and without chemical reaction[J]. Chemical Engineering Journal, 2010, 160(3): 873-881.
34 姜山, 朱春英, 张璠玢, 等. 微通道内单乙醇胺水溶液吸收CO2/N2混合气的传质特性[J]. 化工学报, 2017, 68(2): 643-652.
Jiang S, Zhu C Y, Zhang F B, et al. Mass transfer performance of CO2/N2 mixture absorption into monoethanolamine aqueous solution in microchannel[J]. CIESC Journal, 2017, 68(2): 643-652.
35 Ganapathy H, Steinmayer S, Shooshtari A, et al. Process intensification characteristics of a microreactor absorber for enhanced CO2 capture[J]. Applied Energy, 2016, 162: 416-427.
36 Yao C Q, Dong Z Y, Zhao Y C, et al. An online method to measure mass transfer of slug flow in a microchannel[J]. Chemical Engineering Science, 2014, 112: 15-24.
37 Garstecki P, Fuerstman M J, Stone H A, et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3): 437-446.
38 Guo R W, Fu T T, Zhu C Y, et al. Pressure drop model of gas-liquid flow with mass transfer in tree-typed microchannels[J]. Chemical Engineering Journal, 2020, 397: 125340.
39 Yue J, Luo L G, Gonthier Y, et al. An experimental study of air-water Taylor flow and mass transfer inside square microchannels[J]. Chemical Engineering Science, 2009, 64(16): 3697-3708.
40 Aussillous P, Quéré D. Quick deposition of a fluid on the wall of a tube[J]. Physics of Fluids, 2000, 12(10): 2367-2371.
41 Yao C Q, Zheng J, Zhao Y C, et al. Characteristics of gas-liquid Taylor flow with different liquid viscosities in a rectangular microchannel[J]. Chemical Engineering Journal, 2019, 373: 437-445.
42 Ganapathy H, Shooshtari A, Dessiatoun S, et al. Hydrodynamics and mass transfer performance of a microreactor for enhanced gas separation processes[J]. Chemical Engineering Journal, 2015, 266: 258-270.
43 Saha A K, Bandyopadhyay S S, Biswas A K. Solubility and diffusivity of nitrous oxide and carbon dioxide in aqueous solutions of 2-amino-2-methyl-1-propanol[J]. Journal of Chemical & Engineering Data, 1993, 38: 78-82.
44 Tan J, Lu Y C, Xu J H, et al. Mass transfer characteristic in the formation stage of gas-liquid segmented flow in microchannel[J]. Chemical Engineering Journal, 2012, 185/186: 314-320.
45 Zheng C, Zhao B C, Wang K, et al. Determination of kinetics of CO2 absorption in solutions of 2-amino-2-methyl-1-propanol using a microfluidic technique[J]. AIChE Journal, 2015, 61(12): 4358-4366.
46 Ganapathy H, Shooshtari A, Dessiatoun S, et al. Fluid flow and mass transfer characteristics of enhanced CO2 capture in a minichannel reactor[J]. Applied Energy, 2014, 119: 43-56.
47 Mei M, Hébrard G, Dietrich N, et al. Gas-liquid mass transfer around Taylor bubbles flowing in a long, in-plane, spiral-shaped milli-reactor[J]. Chemical Engineering Science, 2020, 222: 115717.
48 Abiev R S. Bubbles velocity, Taylor circulation rate and mass transfer model for slug flow in milli- and microchannels[J]. Chemical Engineering Journal, 2013, 227: 66-79.
49 Abiev R S. Circulation and bypass modes of the slug flow of a gas-liquid mixture in capillaries[J]. Theoretical Foundations of Chemical Engineering, 2009, 43(3): 298-306.
50 Sun R P, Cubaud T. Dissolution of carbon dioxide bubbles and microfluidic multiphase flows[J]. Lab on a Chip, 2011, 11(17): 2924-2928.
51 Yin Y R, Fu T T, Zhu C Y, et al. Dynamics and mass transfer characteristics of CO2 absorption into MEA/[Bmim][BF4] aqueous solutions in a microchannel[J]. Separation and Purification Technology, 2019, 210: 541-552.
52 Ma D F, Zhu C Y, Fu T T, et al. An effective hybrid solvent of MEA/DEEA for CO2 absorption and its mass transfer performance in microreactor[J]. Separation and Purification Technology, 2020, 242: 116795.
[1] 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964.
[2] 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548.
[3] 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679.
[4] 杨灿, 孙雪琦, 尚明华, 张建, 张香平, 曾少娟. 相变离子液体体系吸收分离CO2的研究现状及展望[J]. 化工学报, 2023, 74(4): 1419-1432.
[5] 龙臻, 王谨航, 何勇, 梁德青. 离子液体与动力学抑制剂作用下混合气体水合物生成特性研究[J]. 化工学报, 2023, 74(4): 1703-1711.
[6] 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246.
[7] 张雪婷, 胡激江, 赵晶, 李伯耿. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351.
[8] 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293.
[9] 何洋, 高森虎, 吴青云, 张明理, 龙涛, 牛佩, 高景辉, 孟颖琪. 析湿工况下平直开缝翅片传热传质特性的数值研究[J]. 化工学报, 2023, 74(3): 1073-1081.
[10] 杨星宇, 马优, 朱春英, 付涛涛, 马友光. 梳状并行微通道内液液分布规律研究[J]. 化工学报, 2023, 74(2): 698-706.
[11] 项星宇, 王忠东, 董艳鹏, 李守川, 朱春英, 马友光, 付涛涛. 微通道内屈服应力型流体的流变特性及多相流研究进展[J]. 化工学报, 2023, 74(2): 546-558.
[12] 陈家辉, 杨鑫泽, 陈顾中, 宋震, 漆志文. 以离子液体密度为例的分子性质预测模型建模方法探讨[J]. 化工学报, 2023, 74(2): 630-641.
[13] 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697.
[14] 白剑钊, 郭子轩, 王德武, 刘燕, 王若瑾, 唐猛, 张少峰. 摇摆对气液并流模式立体旋流筛板压降的影响研究[J]. 化工学报, 2023, 74(2): 707-720.
[15] 盛林, 昌宇, 邓建, 骆广生. 阶梯式T型微通道内有序气泡群的形成和流动特性研究[J]. 化工学报, 2023, 74(1): 416-427.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!