化工学报 ›› 2022, Vol. 73 ›› Issue (5): 1930-1939.doi: 10.11949/0438-1157.20211767
殷亚然1(),朱星星1,张先明1,朱春英2,付涛涛2,马友光2(
)
Yaran YIN1(),Xingxing ZHU1,Xianming ZHANG1,Chunying ZHU2,Taotao FU2,Youguang MA2(
)
摘要:
研究了微通道内醇胺[单乙醇胺(MEA)和甲基二乙醇胺(MDEA)]与离子液体[1-丁基-3-甲基咪唑四氟硼酸([Bmim][BF4])和1-羟乙基-3-甲基咪唑甘氨酸([C2OHmim][GLY])]复配水溶液吸收CO2的传质特性。考察了醇胺/离子液体浓度比(cAA∶cIL)对液相体积传质系数(kLa)的影响,发现kLa随反应速率的增大而增大。为进一步阐释复配水溶液吸收CO2的传质机理,分析了比表面积、扩散速率、增强因子和液弹循环对传质速率的影响。结果表明,四种复配溶液中,反应速率和循环频率(fcir)分别在低流率和高流率下对传质速率起主导作用。kLa可表示为fcir的函数,低气相流率下kLa与fcir呈线性关系,斜率与反应速率成正相关,高气相流率下,液弹循环因膜弹传递困难而对整体传质速率的影响减弱,kLa与fcir呈指数关系,幂律指数小于1。
中图分类号:
1 | Yu C H, Huang C H, Tan C S. A review of CO2 capture by absorption and adsorption[J]. Aerosol and Air Quality Research, 2012, 12(5): 745-769. |
2 | 林海周, 裴爱国, 方梦祥. 燃煤电厂烟气二氧化碳胺法捕集工艺改进研究进展[J]. 化工进展, 2018, 37(12): 4874-4886. |
Lin H Z, Pei A G, Fang M X. Progress of research on process modifications for amine solvent-based post combustion CO2 capture from coal-fired power plant[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4874-4886. | |
3 | 张卫风, 许元龙, 王秋华. CO2醇胺富液低能耗再生研究进展[J]. 化工进展, 2021, 40(8): 4497-4507. |
Zhang W F, Xu Y L, Wang Q H. Progress of research on regeneration of rich alkanolamine solution with low energy consumption[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4497-4507. | |
4 | Veawab A, Tontiwachwuthikul P, Chakma A. Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions[J]. Industrial & Engineering Chemistry Research, 1999, 38(10): 3917-3924. |
5 | MacDowell N, Florin N, Buchard A, et al. An overview of CO2 capture technologies[J]. Energy & Environmental Science, 2010, 3(11): 1645. |
6 | Bates E D, Mayton R D, Ntai I, et al. CO2 capture by a task-specific ionic liquid[J]. Journal of the American Chemical Society, 2002, 124(6): 926-927. |
7 | Zhang Y Y, Ji X Y, Xie Y J, et al. Screening of conventional ionic liquids for carbon dioxide capture and separation[J]. Applied Energy, 2016, 162: 1160-1170. |
8 | Liao H Y, Gao H X, Xu B, et al. Mass transfer performance studies of aqueous blended DEEA-MEA solution using orthogonal array design in a packed column[J]. Separation and Purification Technology, 2017, 183: 117-126. |
9 | 李孟盈, 吕春捷, 徐立华, 等. 离子液体-醇胺水溶液捕集CO2研究进展[J]. 现代化工, 2021, 41(2): 70-74. |
Li M Y, Lyu C J, Xu L H, et al. Research progress in CO2 capture by ionic liquids-alkanolamine aqueous solutions[J]. Modern Chemical Industry, 2021, 41(2): 70-74. | |
10 | 夏裴文, 王强, 张鹏军, 等. 氨基酸离子液体-MDEA复配液对CO2的吸收[J]. 离子交换与吸附, 2019, 35(2): 123-130. |
Xia P W, Wang Q, Zhang P J, et al. Absorptin of CO2 by amino acid ionic liquid-MDEA complex solution[J]. Ion Exchange and Adsorption. 2019, 35(2): 123-130. | |
11 | Ahmady A, Hashim M A, Aroua M K. Kinetics of carbon dioxide absorption into aqueous MDEA +[bmim][BF 4] solutions from 303 to 333 K[J]. Chemical Engineering Journal, 2012, 200/201/202: 317-328. |
12 | Lu B H, Wang X Q, Xia Y F, et al. Kinetics of carbon dioxide absorption into mixed aqueous solutions of MEA + [Bmim][BF4] using a double stirred cell[J]. Energy & Fuels, 2013, 27(10): 6002-6009. |
13 | Lu B H, Jin J J, Zhang L, et al. Absorption of carbon dioxide into aqueous blend of monoethanolamine and 1-butyl-3-methylimidazolium tetrafluoroborate[J]. International Journal of Greenhouse Gas Control, 2012, 11: 152-157. |
14 | Lv B H, Shi Y, Sun C, et al. CO2 capture by a highly-efficient aqueous blend of monoethanolamine and a hydrophilic amino acid ionic liquid[C2OHmim][Gly][J]. Chemical Engineering Journal, 2015, 270: 372-377. |
15 | Lv B H, Sun C, Liu N, et al. Mass transfer and kinetics of CO2 absorption into aqueous monoethanolamine/1-hydroxyethy-3-methyl imidazolium glycinate solution[J]. Chemical Engineering Journal, 2015, 280: 695-702. |
16 | Exposito A J, Bai Y, Tchabanenko K, et al. Process intensification of continuous-flow imine hydrogenation in catalyst-coated tube reactors[J]. Industrial & Engineering Chemistry Research, 2019, 58(11): 4433-4442. |
17 | Sansotera M, Baggioli A, Ieffa S, et al. Catalytic microreactor with electrodeposited hierarchically nanostructured nickel coatings for gas-phase fluorination reactions[J]. Journal of Fluorine Chemistry, 2018, 205: 22-29. |
18 | Liu S E, Li G X, Shang M J, et al. Hydrodynamics study of a fast liquid-liquid oxidation process with in situ gas production in microreactors[J]. AIChE Journal, 2021, 67(11): e17362. |
19 | 丁云成, 王法军, 艾宁, 等. 微反应器内连续重氮化/偶合反应进展[J]. 化工学报, 2018, 69(11): 4542-4552. |
Ding Y C, Wang F J, Ai N, et al. Research progress on continuous diazotization/azo-coupling reaction in microreactors[J]. CIESC Journal, 2018, 69(11): 4542-4552. | |
20 | Yao C Q, Zhu K, Liu Y Y, et al. Intensified CO2 absorption in a microchannel reactor under elevated pressures[J]. Chemical Engineering Journal, 2017, 319: 179-190. |
21 | 尧超群, 乐军, 赵玉潮, 等. 微通道内气-液弹状流动及传质特性研究进展[J]. 化工学报, 2015, 66(8): 2759-2766. |
Yao C Q, Yue J, Zhao Y C, et al. Review on flow and mass transfer characteristics of gas-liquid slug flow in microchannels[J]. CIESC Journal, 2015, 66(8): 2759-2766. | |
22 | Berčič G, Pintar A. The role of gas bubbles and liquid slug lengths on mass transport in the Taylor flow through capillaries[J]. Chemical Engineering Science, 1997, 52(21/22): 3709-3719. |
23 | van Baten J M, Krishna R. CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries[J]. Chemical Engineering Science, 2004, 59(12): 2535-2545. |
24 | Sobieszuk P, Pohorecki R, Cygański P, et al. Determination of the interfacial area and mass transfer coefficients in the Taylor gas-liquid flow in a microchannel[J]. Chemical Engineering Science, 2011, 66(23): 6048-6056. |
25 | Zhang P, Yao C Q, Ma H Y, et al. Dynamic changes in gas-liquid mass transfer during Taylor flow in long serpentine square microchannels[J]. Chemical Engineering Science, 2018, 182: 17-27. |
26 | Yao C Q, Zhao Y C, Zheng J, et al. The effect of liquid viscosity and modeling of mass transfer in gas-liquid slug flow in a rectangular microchannel[J]. AIChE Journal, 2020, 66(5): e16934. |
27 | Butler C, Lalanne B, Sandmann K, et al. Mass transfer in Taylor flow: transfer rate modelling from measurements at the slug and film scale[J]. International Journal of Multiphase Flow, 2018, 105: 185-201. |
28 | Butler C, Cid E, Billet A M. Modelling of mass transfer in Taylor flow: investigation with the PLIF-I technique[J]. Chemical Engineering Research and Design, 2016, 115: 292-302. |
29 | Abiev R S, Butler C, Cid E, et al. Mass transfer characteristics and concentration field evolution for gas-liquid Taylor flow in milli channels[J]. Chemical Engineering Science, 2019, 207: 1331-1340. |
30 | 张筱丽, MDEA/氨基酸功能性离子液体混合水溶液吸收CO 2 的研究[D]. 杭州: 浙江大学, 2016. |
Zhang X L. CO2 absorption into the mixed aqueous solution of MDEA and amino acid ionic liquid[D]. Hangzhou: Zhejiang University, 2016. | |
31 | Last W, Stichlmair J. Determination of mass transfer parameters by means of chemical absorption[J]. Chemical Engineering & Technology, 2002, 25(4): 385-391. |
32 | Kockmann N, Karlen S, Girard C, et al. Liquid-liquid test reactions to characterize two-phase mixing in microchannels[J]. Heat Transfer Engineering, 2013, 34(2/3): 169-177. |
33 | Shao N, Gavriilidis A, Angeli P. Mass transfer during Taylor flow in microchannels with and without chemical reaction[J]. Chemical Engineering Journal, 2010, 160(3): 873-881. |
34 | 姜山, 朱春英, 张璠玢, 等. 微通道内单乙醇胺水溶液吸收CO2/N2混合气的传质特性[J]. 化工学报, 2017, 68(2): 643-652. |
Jiang S, Zhu C Y, Zhang F B, et al. Mass transfer performance of CO2/N2 mixture absorption into monoethanolamine aqueous solution in microchannel[J]. CIESC Journal, 2017, 68(2): 643-652. | |
35 | Ganapathy H, Steinmayer S, Shooshtari A, et al. Process intensification characteristics of a microreactor absorber for enhanced CO2 capture[J]. Applied Energy, 2016, 162: 416-427. |
36 | Yao C Q, Dong Z Y, Zhao Y C, et al. An online method to measure mass transfer of slug flow in a microchannel[J]. Chemical Engineering Science, 2014, 112: 15-24. |
37 | Garstecki P, Fuerstman M J, Stone H A, et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3): 437-446. |
38 | Guo R W, Fu T T, Zhu C Y, et al. Pressure drop model of gas-liquid flow with mass transfer in tree-typed microchannels[J]. Chemical Engineering Journal, 2020, 397: 125340. |
39 | Yue J, Luo L G, Gonthier Y, et al. An experimental study of air-water Taylor flow and mass transfer inside square microchannels[J]. Chemical Engineering Science, 2009, 64(16): 3697-3708. |
40 | Aussillous P, Quéré D. Quick deposition of a fluid on the wall of a tube[J]. Physics of Fluids, 2000, 12(10): 2367-2371. |
41 | Yao C Q, Zheng J, Zhao Y C, et al. Characteristics of gas-liquid Taylor flow with different liquid viscosities in a rectangular microchannel[J]. Chemical Engineering Journal, 2019, 373: 437-445. |
42 | Ganapathy H, Shooshtari A, Dessiatoun S, et al. Hydrodynamics and mass transfer performance of a microreactor for enhanced gas separation processes[J]. Chemical Engineering Journal, 2015, 266: 258-270. |
43 | Saha A K, Bandyopadhyay S S, Biswas A K. Solubility and diffusivity of nitrous oxide and carbon dioxide in aqueous solutions of 2-amino-2-methyl-1-propanol[J]. Journal of Chemical & Engineering Data, 1993, 38: 78-82. |
44 | Tan J, Lu Y C, Xu J H, et al. Mass transfer characteristic in the formation stage of gas-liquid segmented flow in microchannel[J]. Chemical Engineering Journal, 2012, 185/186: 314-320. |
45 | Zheng C, Zhao B C, Wang K, et al. Determination of kinetics of CO2 absorption in solutions of 2-amino-2-methyl-1-propanol using a microfluidic technique[J]. AIChE Journal, 2015, 61(12): 4358-4366. |
46 | Ganapathy H, Shooshtari A, Dessiatoun S, et al. Fluid flow and mass transfer characteristics of enhanced CO2 capture in a minichannel reactor[J]. Applied Energy, 2014, 119: 43-56. |
47 | Mei M, Hébrard G, Dietrich N, et al. Gas-liquid mass transfer around Taylor bubbles flowing in a long, in-plane, spiral-shaped milli-reactor[J]. Chemical Engineering Science, 2020, 222: 115717. |
48 | Abiev R S. Bubbles velocity, Taylor circulation rate and mass transfer model for slug flow in milli- and microchannels[J]. Chemical Engineering Journal, 2013, 227: 66-79. |
49 | Abiev R S. Circulation and bypass modes of the slug flow of a gas-liquid mixture in capillaries[J]. Theoretical Foundations of Chemical Engineering, 2009, 43(3): 298-306. |
50 | Sun R P, Cubaud T. Dissolution of carbon dioxide bubbles and microfluidic multiphase flows[J]. Lab on a Chip, 2011, 11(17): 2924-2928. |
51 | Yin Y R, Fu T T, Zhu C Y, et al. Dynamics and mass transfer characteristics of CO2 absorption into MEA/[Bmim][BF4] aqueous solutions in a microchannel[J]. Separation and Purification Technology, 2019, 210: 541-552. |
52 | Ma D F, Zhu C Y, Fu T T, et al. An effective hybrid solvent of MEA/DEEA for CO2 absorption and its mass transfer performance in microreactor[J]. Separation and Purification Technology, 2020, 242: 116795. |
[1] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
[2] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[3] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[4] | 杨灿, 孙雪琦, 尚明华, 张建, 张香平, 曾少娟. 相变离子液体体系吸收分离CO2的研究现状及展望[J]. 化工学报, 2023, 74(4): 1419-1432. |
[5] | 龙臻, 王谨航, 何勇, 梁德青. 离子液体与动力学抑制剂作用下混合气体水合物生成特性研究[J]. 化工学报, 2023, 74(4): 1703-1711. |
[6] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[7] | 张雪婷, 胡激江, 赵晶, 李伯耿. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351. |
[8] | 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293. |
[9] | 何洋, 高森虎, 吴青云, 张明理, 龙涛, 牛佩, 高景辉, 孟颖琪. 析湿工况下平直开缝翅片传热传质特性的数值研究[J]. 化工学报, 2023, 74(3): 1073-1081. |
[10] | 杨星宇, 马优, 朱春英, 付涛涛, 马友光. 梳状并行微通道内液液分布规律研究[J]. 化工学报, 2023, 74(2): 698-706. |
[11] | 项星宇, 王忠东, 董艳鹏, 李守川, 朱春英, 马友光, 付涛涛. 微通道内屈服应力型流体的流变特性及多相流研究进展[J]. 化工学报, 2023, 74(2): 546-558. |
[12] | 陈家辉, 杨鑫泽, 陈顾中, 宋震, 漆志文. 以离子液体密度为例的分子性质预测模型建模方法探讨[J]. 化工学报, 2023, 74(2): 630-641. |
[13] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[14] | 白剑钊, 郭子轩, 王德武, 刘燕, 王若瑾, 唐猛, 张少峰. 摇摆对气液并流模式立体旋流筛板压降的影响研究[J]. 化工学报, 2023, 74(2): 707-720. |
[15] | 盛林, 昌宇, 邓建, 骆广生. 阶梯式T型微通道内有序气泡群的形成和流动特性研究[J]. 化工学报, 2023, 74(1): 416-427. |
|