化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2563-2572.DOI: 10.11949/0438-1157.20220052
收稿日期:
2022-01-11
修回日期:
2022-04-07
出版日期:
2022-06-05
发布日期:
2022-06-30
通讯作者:
付涛涛
作者简介:
王忠东(1999—),男,硕士研究生,基金资助:
Zhongdong WANG(),Chunying ZHU,Youguang MA,Taotao FU()
Received:
2022-01-11
Revised:
2022-04-07
Online:
2022-06-05
Published:
2022-06-30
Contact:
Taotao FU
摘要:
使用高速摄像仪研究了T形并行微通道液液两相流的流型。以甘油-水溶液为分散相、含5%(质量分数)道康宁的硅油为连续相,下游通道中观察到了塞状流、液滴流、环状流和并行流4种流型,绘制了流型图及流型转变线。研究了后空腔中液滴群的形态,运用介尺度概念分析了后空腔中液滴群的行为对流量分配的影响。观察到后空腔中液滴群的挤压、松散、有序排列和并行排列等4种形态,不同形态的转变主要受两相流量比的控制。研究了两相流量比对并行微通道内流量分配的影响,以及分析了不同操作条件下影响流量分配的主导因素。在两相流量比较小时,流量分配由下游通道的流体阻力主导,而两相流量比较大时由后空腔内液滴群动力学主导。
中图分类号:
王忠东, 朱春英, 马友光, 付涛涛. 并行微通道内液液两相流及介尺度效应[J]. 化工学报, 2022, 73(6): 2563-2572.
Zhongdong WANG, Chunying ZHU, Youguang MA, Taotao FU. Liquid-liquid two-phase flow and mesoscale effect in parallel microchannels[J]. CIESC Journal, 2022, 73(6): 2563-2572.
溶液类型 | ρ/(kg·m-3) | μ/(mPa·s) | γ/(mN·m-1) |
---|---|---|---|
道康宁-10 mPa·s硅油 | 947.42 | 10.16 | 5.81① |
道康宁-50 mPa·s硅油 | 971.54 | 54.70 | 4.81① |
道康宁-100 mPa·s硅油 | 977.65 | 98.90 | 3.59① |
去离子水 | 998.25 | 0.95 | 5.81② |
30%甘油-水溶液 | 1072.39 | 2.06 | 7.99② |
60%甘油-水溶液 | 1160.38 | 7.86 | 12.75② |
表1 实验中使用流体的物性数据
Table 1 Physical properties of various fluids used in the experiment
溶液类型 | ρ/(kg·m-3) | μ/(mPa·s) | γ/(mN·m-1) |
---|---|---|---|
道康宁-10 mPa·s硅油 | 947.42 | 10.16 | 5.81① |
道康宁-50 mPa·s硅油 | 971.54 | 54.70 | 4.81① |
道康宁-100 mPa·s硅油 | 977.65 | 98.90 | 3.59① |
去离子水 | 998.25 | 0.95 | 5.81② |
30%甘油-水溶液 | 1072.39 | 2.06 | 7.99② |
60%甘油-水溶液 | 1160.38 | 7.86 | 12.75② |
1 | Brandner J, Fichtner M, Schubert K. Electrically heated microstructure heat exchangers and reactors[C]//Microreaction Technology: Industrial Prospects, 2000: 607-616. |
2 | Peyman S A, Abou-Saleh R H, McLaughlan J R, et al. Expanding 3D geometry for enhanced on-chip microbubble production and single step formation of liposome modified microbubbles[J]. Lab on a Chip, 2012, 12(21): 4544-4552. |
3 | Adamson D N, Mustafi D, Zhang J X J, et al. Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices[J]. Lab on a Chip, 2006, 6(9): 1178-1186. |
4 | Sinton D. Energy: the microfluidic frontier[J]. Lab on a Chip, 2014, 14(17): 3127-3134. |
5 | Cai W F, Zhang J, Zhang X B, et al. Enhancement of CO2 absorption under Taylor flow in the presence of fine particles[J]. Chinese Journal of Chemical Engineering, 2013, 21(2): 135-143. |
6 | Abolhasani M, Günther A, Kumacheva E. Microfluidic studies of carbon dioxide[J]. Angewandte Chemie International Edition, 2014, 53(31): 7992-8002. |
7 | Kuijpers K P L, van Dijk M A H, Rumeur Q G, et al. A sensitivity analysis of a numbered-up photomicroreactor system[J]. Reaction Chemistry & Engineering, 2017, 2(2): 109-115. |
8 | Chambers R D, Fox M A, Holling D, et al. Elemental fluorine (part 16): Versatile thin-film gas-liquid multi-channel microreactors for effective scale-out[J]. Lab on a Chip, 2005, 5(2): 191-198. |
9 | Su Y H, Kuijpers K, Hessel V, et al. A convenient numbering-up strategy for the scale-up of gas-liquid photoredox catalysis in flow[J]. Reaction Chemistry & Engineering, 2016, 1(1): 73-81. |
10 | Laporte M, Montillet A, Valle D D, et al. Characteristics of foams produced with viscous shear thinning fluids using microchannels at high throughput[J]. Journal of Food Engineering, 2016, 173: 25-33. |
11 | Kinstlinger I S, Miller J S. 3D-printed fluidic networks as vasculature for engineered tissue[J]. Lab on a Chip, 2016, 16(11): 2025-2043. |
12 | Garstecki P, Fuerstman M J, Stone H A, et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3): 437-446. |
13 | Garstecki P, Stone H A, Whitesides G M. Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions[J]. Physical Review Letters, 2005, 94(16): 164501. |
14 | Pohar A, Lakner M, Plazl I. Parallel flow of immiscible liquids in a microreactor: modeling and experimental study[J]. Microfluidics and Nanofluidics, 2012, 12(1/2/3/4): 307-316. |
15 | Zhu P G, Wang L Q. Passive and active droplet generation with microfluidics: a review[J]. Lab on a Chip, 2016, 17(1): 34-75. |
16 | Zhang J S, Wang K, Teixeira A R, et al. Design and scaling up of microchemical systems: a review[J]. Annual Review of Chemical and Biomolecular Engineering, 2017, 8: 285-305. |
17 | Wang K, Li L T, Xie P, et al. Liquid-liquid microflow reaction engineering[J]. Reaction Chemistry & Engineering, 2017, 2(5): 611-627. |
18 | Wang K, Luo G S. Microflow extraction: a review of recent development[J]. Chemical Engineering Science, 2017, 169: 18-33. |
19 | Zhao C X, Middelberg A P J. Two-phase microfluidic flows[J]. Chemical Engineering Science, 2011, 66(7): 1394-1411. |
20 | Shui L L, Eijkel J C T, van den Berg A. Multiphase flow in micro- and nanochannels[J]. Sensors and Actuators B: Chemical, 2007, 121(1): 263-276. |
21 | Wörner M. Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications[J]. Microfluidics and Nanofluidics, 2012, 12(6): 841-886. |
22 | Stone H A, Stroock A D, Ajdari A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip[J]. Annual Review of Fluid Mechanics, 2004, 36: 381-411. |
23 | Qiu M, Zha L, Song Y, et al. Numbering-up of capillary microreactors for homogeneous processes and its application in free radical polymerization[J]. Reaction Chemistry & Engineering, 2019, 4(2): 351-361. |
24 | Fu T T, Ma Y G. Bubble formation and breakup dynamics in microfluidic devices: a review[J]. Chemical Engineering Science, 2015, 135: 343-372. |
25 | Du W, Fu T T, Zhu C Y, et al. Breakup dynamics for high-viscosity droplet formation in a flow-focusing device: symmetrical and asymmetrical ruptures[J]. AIChE Journal, 2016, 62(1): 325-337. |
26 | van Steijn V, Kreutzer M T, Kleijn C R. μ-PIV study of the formation of segmented flow in microfluidic T-junctions[J]. Chemical Engineering Science, 2007, 62(24): 7505-7514. |
27 | Garstecki P, Gitlin I, DiLuzio W, et al. Formation of monodisperse bubbles in a microfluidic flow-focusing device[J]. Applied Physics Letters, 2004, 85(13): 2649-2651. |
28 | Husny J, Cooper-White J J. The effect of elasticity on drop creation in T-shaped microchannels[J]. Journal of Non-Newtonian Fluid Mechanics, 2006, 137(1/2/3): 121-136. |
29 | Xu J H, Li S W, Wang Y J, et al. Controllable gas-liquid phase flow patterns and monodisperse microbubbles in a microfluidic T-junction device[J]. Applied Physics Letters, 2006, 88(13): 133506. |
30 | Cristini V, Tan Y C. Theory and numerical simulation of droplet dynamics in complex flows: a review[J]. Lab on a Chip, 2004, 4(4): 257-264. |
31 | Kockmann N, Gottsponer M, Roberge D M. Scale-up concept of single-channel microreactors from process development to industrial production[J]. Chemical Engineering Journal, 2011, 167(2/3): 718-726. |
32 | Zhao F, Cambié D, Janse J, et al. Scale-up of a luminescent solar concentrator-based photomicroreactor via numbering-up[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 422-429. |
33 | Tondeur D, Luo L G. Design and scaling laws of ramified fluid distributors by the constructal approach[J]. Chemical Engineering Science, 2004, 59(8/9): 1799-1813. |
34 | Commenge J M, Falk L, Corriou J P, et al. Optimal design for flow uniformity in microchannel reactors[J]. AIChE Journal, 2002, 48(2): 345-358. |
35 | Chen Y, Lei Z L, Zhang T H, et al. Flow distribution of hydrocarbon fuel in parallel minichannels heat exchanger[J]. AIChE Journal, 2018, 64(7): 2781-2791. |
36 | Emerson D R, Cieślicki K, Gu X J, et al. Biomimetic design of microfluidic manifolds based on a generalised Murray's law[J]. Lab on a Chip, 2006, 6(3): 447-454. |
37 | Lee J Y, Lee S J. Murray's law and the bifurcation angle in the arterial micro-circulation system and their application to the design of microfluidics[J]. Microfluidics and Nanofluidics, 2009, 8(1): 85-95. |
38 | Park Y J, Yu T, Yim S J, et al. A 3D-printed flow distributor with uniform flow rate control for multi-stacked microfluidic systems[J]. Lab on a Chip, 2018, 18(8): 1250-1258. |
39 | Cornish R J. Flow in a pipe of rectangular cross-section[J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1928, 120(786): 691-700. |
40 | Fu T T, Ma Y G, Li H Z. Hydrodynamic feedback on bubble breakup at a T-junction within an asymmetric loop[J]. AIChE Journal, 2014, 60(5): 1920-1929. |
41 | Mi S, Jiang S K, Zhu C Y, et al. Mesoscale effect on bubble formation in step-emulsification devices with two parallel microchannels[J]. AIChE Journal, 2021, 67(1): e17075. |
42 | 李静海, 胡英, 袁权. 探索介尺度科学: 从新角度审视老问题[J]. 中国科学: 化学, 2014, 44(3): 277-281. |
Li J H, Hu Y, Yuan Q. Mesoscience: exploring old problems from a new angle[J]. Scientia Sinica (Chimica), 2014, 44(3): 277-281. | |
43 | Gada V H, Sharma A. Analytical and level-set method based numerical study on oil-water smooth/wavy stratified-flow in an inclined plane-channel[J]. International Journal of Multiphase Flow, 2012, 38(1): 99-117. |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[3] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[4] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[5] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[6] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[7] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[8] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[9] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[10] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[11] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[12] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[13] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[14] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[15] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 479
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 380
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||