1 |
Angeli S D, Gossler S, Lichtenberg S, et al. Reduction of CO2 emission from off-gases of steel industry by dry reforming of methane[J]. Angewandte Chemie International Edition, 2021, 60(21): 11852-11857.
|
2 |
周守毅. 钢铁企业副产煤气中硫化物的测定[J]. 环境科学与技术, 2017, 40(S1): 252-254.
|
|
Zhou S Y. Determiningsulfur compound in by-product gas of iron and steel enterprises[J]. Environmental Science & Technology, 2017, 40(S1): 252-254.
|
3 |
郭玉华. 高炉煤气净化提质利用技术现状及未来发展趋势[J]. 钢铁研究学报, 2020, 32(7): 525-531.
|
|
Guo Y H. Current station and tendency of purification and upgrading of blast furnace gas[J]. Journal of Iron and Steel Research, 2020, 32(7): 525-531.
|
4 |
Wang X Q, Qiu J, Ning P, et al. Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions[J]. Journal of Hazardous Materials, 2012, 229/230: 128-136.
|
5 |
Wang H Y, Yi H H, Ning P, et al. Calcined hydrotalcite-like compounds as catalysts for hydrolysis carbonyl sulfide at low temperature[J]. Chemical Engineering Journal, 2011, 166(1): 99-104.
|
6 |
Zhang Y Q, Xiao Z B, Ma J X. Hydrolysis of carbonyl sulfide over rare earth oxysulfides[J]. Applied Catalysis B: Environmental, 2004, 48(1): 57-63.
|
7 |
Bashkova S, Armstrong T R, Schwartz V. Selective catalytic oxidation of hydrogen sulfide on activated carbons impregnated with sodium hydroxide[J]. Energy & Fuels, 2009, 23(3): 1674-1682.
|
8 |
吴沛文, 荀苏杭, 蒋伟, 等. 离子液体反应型萃取燃油脱硫研究进展[J]. 化工学报, 2021, 72(1): 276-291.
|
|
Wu P W, Xun S H, Jiang W, et al. Recent progress on extractive desulfurization of fuel oils through reactions based on ionic liquids as solvents and catalysts[J]. CIESC Journal, 2021, 72(1): 276-291.
|
9 |
王红妍, 易红宏, 唐晓龙, 等. 改性活性炭催化水解羰基硫[J]. 中南大学学报(自然科学版), 2011, 42(3): 848-852.
|
|
Wang H Y, Yi H H, Tang X L, et al. Catalytic hydrolysis of carbonyl sulfide over modified activated carbon[J]. Journal of Central South University (Science and Technology), 2011, 42(3):848-852.
|
10 |
李新学, 刘迎新, 魏雄辉. 羰基硫脱除技术[J]. 现代化工, 2004, 24(8): 19-22.
|
|
Li X X, Liu Y X, Wei X H. Technology for carbonyl sulfide removal[J]. Modern Chemical Industry, 2004, 24(8):19-22.
|
11 |
李敏, 张智宏, 魏燕. Cu、Ag改性活性炭常温脱除低浓度羰基硫性能[J]. 精细化工, 2016, 33(4): 390-395.
|
|
Li M, Zhang Z H, Wei Y. Adsorption of low concentration of carbonyl sulfide by Cu, Ag modified activated carbon at ambient temperature[J]. Fine Chemicals, 2016, 33(4): 390-395.
|
12 |
Li B C. Human nature, the means-ends relationship, and alienation: themes for potential East-West collaboration[J]. Technology in Society, 2015, 43: 60-64.
|
13 |
He D, Yi H H, Tang X L, et al. The catalytic hydrolysis of carbon disulfide on Fe-Cu-Ni/AC catalyst at low temperature[J]. Journal of Molecular Catalysis A: Chemical, 2012, 357: 44-49.
|
14 |
Li K L, Ning P, Li K, et al. Low temperature catalytic hydrolysis of carbon disulfide on activated carbon fibers modified by non-thermal plasma[J]. Plasma Chemistry and Plasma Processing, 2017, 37(4): 1175-1191.
|
15 |
Qie Z P, Sun F, Zhang Z K, et al. A facile trace potassium assisted catalytic activation strategy regulating pore topology of activated coke for combined removal of toluene/SO2/NO[J]. Chemical Engineering Journal, 2020, 389: 124262.
|
16 |
Izquierdo M T, Rubio B, Mayoral C, et al. Low cost coal-based carbons for combined SO2 and NO removal from exhaust gas[J]. Fuel, 2003, 82(2): 147-151.
|
17 |
李俊杰, 魏进超, 刘昌齐. 活性炭法多污染物控制技术的工业应用[J]. 烧结球团, 2017, 42(3): 79-85.
|
|
Li J J, Wei J C, Liu C Q. Combined desulfurization, denitrification and reduction of air toxice using activated coke[J]. Sintering and Pelletizing, 2017, 42(3): 79-85.
|
18 |
李阳, 朱玉雯, 高继慧, 等. 活性焦孔结构演变规律及对脱硫性能的影响[J]. 化工学报, 2015, 66(3): 1126-1132.
|
|
Li Y, Zhu Y W, Gao J H, et al. Activated coke pore structure evolution and its influence on desulfuration[J]. CIESC Journal, 2015, 66(3): 1126-1132.
|
19 |
杨林, 孟小谜, 姚露, 等. 天然矿物共混活性焦联合低温脱硫脱硝[J]. 化工学报, 2021, 72(4): 2241-2248.
|
|
Yang L, Meng X M, Yao L, et al. Combined low-temperature flue gas denitrification and desulfurization over the natural mineral blending modified activated coke[J]. CIESC Journal, 2021, 72(4): 2241-2248.
|
20 |
Li Y R, Lin Y T, Wang B, et al. Carbon consumption of activated coke in the thermal regeneration process for flue gas desulfurization and denitrification[J]. Journal of Cleaner Production, 2019, 228: 1391-1400.
|
21 |
Tsuji K, Shiraishi I. Combined desulfurization, denitrification and reduction of air toxics using activated coke (1): Activity of activated coke[J]. Fuel, 1997, 76(6): 549-553.
|
22 |
于凤芹, 李运甲, 刘周恩, 等. 移动床活性焦烟气净化工艺中废活性焦的形成与特征分析[J]. 过程工程学报, 2020, 20(6): 695-702.
|
|
Yu Fengqin, Li Yunjia, Liu Zhou'en, et al. Formation and characteristics of used activated coke from flue gas purification process by activated coke in moving bed[J]. The Chinese Journal of Process Engineering, 2020, 20(6): 695-702.
|
23 |
Figueiredo J L, Pereira M F R, Freitas M M A, et al. Modification of the surface chemistry of activated carbons[J]. Carbon, 1999, 37(9): 1379-1389.
|
24 |
Li Y J, Zhang X L, Huangfu L, et al. The simultaneous removal of SO2 and NO from flue gas over activated coke in a multi-stage fluidized bed at low temperature[J]. Fuel, 2020, 275: 117862.
|
25 |
Szymański G S, Karpiński Z, Biniak S, et al. The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon[J]. Carbon, 2002, 40(14): 2627-2639.
|
26 |
Zhou J H, Sui Z J, Zhu J, et al. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR[J]. Carbon, 2007, 45(4): 785-796.
|
27 |
Jia Y F, Xiao B, Thomas K M. Adsorption of metal ions on nitrogen surface functional groups in activated carbons[J]. Langmuir, 2002, 18(2): 470-478.
|
28 |
Mawhinney D B, Yates J T. FTIR study of the oxidation of amorphous carbon by ozone at 300 K—direct COOH formation[J]. Carbon, 2001, 39(8): 1167-1173.
|
29 |
Cagniant D, Gruber R, Boudou J P, et al. Structural characterization of nitrogen-enriched coals[J]. Energy & Fuels, 1998, 12(4): 672-681.
|
30 |
Qiu J, Ning P, Wang X Q, et al. Removing carbonyl sulfide with metal-modified activated carbon[J]. Frontiers of Environmental Science & Engineering, 2016, 10(1): 11-18.
|
31 |
Lin Y T, Li Y R, Xu Z C, et al. Transformation of functional groups in the reduction of NO with NH3 over nitrogen-enriched activated carbons[J]. Fuel, 2018, 223: 312-323.
|
32 |
Rhodes C, Riddel S A, West J, et al. The low-temperature hydrolysis of carbonyl sulfide and carbon disulfide: a review[J]. Catalysis Today, 2000, 59(3/4): 443-464.
|
33 |
陈凯琳, 黄小凤, 李琳丽, 等. 吸附法脱除废气中羰基硫的研究进展[J]. 化学通报, 2021, 84(6): 543-552.
|
|
Chen K L, Huang X F, Li L L, et al. Research progress in removal of carbonyl sulfide from waste gas by adsorption method[J]. Chemistry, 2021, 84(6): 543-552.
|
34 |
Zhao H, Zhang D, Wang F, et al. Removal of carbonyl sulfide from syngas using a novel mixed-oxide sorbent[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2010, 32(8): 759-768.
|
35 |
Pan Y K, Chen M Q, Su Z, et al. Two-dimensional CaO/carbon heterostructures with unprecedented catalytic performance in room-temperature H2S oxidization[J]. Applied Catalysis B: Environmental, 2021, 280: 119444.
|