化工学报 ›› 2022, Vol. 73 ›› Issue (1): 153-161.DOI: 10.11949/0438-1157.20211084
收稿日期:
2021-08-02
修回日期:
2021-10-22
出版日期:
2022-01-05
发布日期:
2022-01-18
通讯作者:
刘朝晖
作者简介:
张家庆(1998—),男,硕士研究生,基金资助:
Jiaqing ZHANG(),Zhaohui LIU(),Yu LI,Chenyang SONG
Received:
2021-08-02
Revised:
2021-10-22
Online:
2022-01-05
Published:
2022-01-18
Contact:
Zhaohui LIU
摘要:
基于流体动力学层流哈根-泊肃叶(Hagen-Poiseuille)定律,利用双毛细管法,对高密度空天动力燃料JP-10液态黏度进行实验测量,测温范围326.6~671.2 K,测量压力2.0、 3.0、 4.0 MPa,扩展相对不确定度2.88%~4.96%(置信因子k=2)。通过纯物质环己烷动力黏度的测量,对实验系统进行了标定,实验结果与NIST数据库平均相对偏差在1.22%以内,最大相对偏差绝对值为2.04%,实验结果与推荐黏度值在2.0 MPa时平均相对偏差为1.25%,4.0 MPa时平均相对偏差为1.61%,最大相对偏差绝对值为3.50%,验证了实验系统的可靠性。选取临界压力状态的黏度值作为参考状态值,通过引用Yaws液相有机化合物的黏度经验公式,结合SRK状态方程对绝对速率理论黏度模型进行了改进,耦合实验数据,建立了一种适用于碳氢燃料的高温高压液相黏度的推算模型。采取共轭梯度法和遗传算法对模型参数进行拟合,计算结果与实验结果的平均相对偏差值在2.00%以内,最大相对偏差绝对值小于4.50%,验证了模型的精确性。
中图分类号:
张家庆, 刘朝晖, 李宇, 宋晨阳. 碳氢燃料JP-10高温液态黏度测量和推算模型构建方法研究[J]. 化工学报, 2022, 73(1): 153-161.
Jiaqing ZHANG, Zhaohui LIU, Yu LI, Chenyang SONG. Viscosity measurements and prediction model construction for liquid JP-10 at high-temperature conditions[J]. CIESC Journal, 2022, 73(1): 153-161.
p=2.0 MPa | p=4.0 MPa | ||||||
---|---|---|---|---|---|---|---|
T/K | ηexp/ (μPa·s) | T/K | ηref/ (μPa·s) | T/K | ηexp/ (μPa·s) | T/K | ηref/ (μPa·s) |
302.0 | 863.65 | 290.0 | 1056.6 | 302.0 | 884.37 | 290.0 | 1085.5 |
319.5 | 646.27 | 300.0 | 885.9 | 319.5 | 663.26 | 300.0 | 909.7 |
327.6 | 594.57 | 310.0 | 754.2 | 327.6 | 610.19 | 310.0 | 774.1 |
335.9 | 531.99 | 320.0 | 650.4 | 335.5 | 541.90 | 320.0 | 667.5 |
345.5 | 471.67 | 330.0 | 567.0 | 345.1 | 486.65 | 330.0 | 581.9 |
356.1 | 416.09 | 340.0 | 498.7 | 356.1 | 427.50 | 340.0 | 511.9 |
368.1 | 356.53 | 350.0 | 441.8 | 368.2 | 366.24 | 350.0 | 453.7 |
375.4 | 336.10 | 400.0 | 259.9 | 375.3 | 346.24 | 400.0 | 268.1 |
391.8 | 283.30 | 500.0 | 106.34 | 392.0 | 291.42 | 500.0 | 115.16 |
396.0 | 275.59 | 396.0 | 284.17 | ||||
405.1 | 244.10 | 405.1 | 252.00 | ||||
416.6 | 219.31 | 416.9 | 226.13 |
表1 环己烷动力黏度标定值与推荐值
Table 1 Calibration experimental values of cyclohexane dynamic viscosity
p=2.0 MPa | p=4.0 MPa | ||||||
---|---|---|---|---|---|---|---|
T/K | ηexp/ (μPa·s) | T/K | ηref/ (μPa·s) | T/K | ηexp/ (μPa·s) | T/K | ηref/ (μPa·s) |
302.0 | 863.65 | 290.0 | 1056.6 | 302.0 | 884.37 | 290.0 | 1085.5 |
319.5 | 646.27 | 300.0 | 885.9 | 319.5 | 663.26 | 300.0 | 909.7 |
327.6 | 594.57 | 310.0 | 754.2 | 327.6 | 610.19 | 310.0 | 774.1 |
335.9 | 531.99 | 320.0 | 650.4 | 335.5 | 541.90 | 320.0 | 667.5 |
345.5 | 471.67 | 330.0 | 567.0 | 345.1 | 486.65 | 330.0 | 581.9 |
356.1 | 416.09 | 340.0 | 498.7 | 356.1 | 427.50 | 340.0 | 511.9 |
368.1 | 356.53 | 350.0 | 441.8 | 368.2 | 366.24 | 350.0 | 453.7 |
375.4 | 336.10 | 400.0 | 259.9 | 375.3 | 346.24 | 400.0 | 268.1 |
391.8 | 283.30 | 500.0 | 106.34 | 392.0 | 291.42 | 500.0 | 115.16 |
396.0 | 275.59 | 396.0 | 284.17 | ||||
405.1 | 244.10 | 405.1 | 252.00 | ||||
416.6 | 219.31 | 416.9 | 226.13 |
参数 | 标准不确定度 |
---|---|
体积流量 | 0.01 ml/min |
压力 | 0.008 MPa |
上游压差 | 1.346 kPa |
下游压差 | 0.006 kPa |
温度 | 0.38 K |
JP-10密度 | 2.50 kg/m3 |
T0温度环己烷黏度 | 4.32 μPa·s |
表2 主要实验参数的不确定度
Table 2 Uncertainties of the main experimental parameters
参数 | 标准不确定度 |
---|---|
体积流量 | 0.01 ml/min |
压力 | 0.008 MPa |
上游压差 | 1.346 kPa |
下游压差 | 0.006 kPa |
温度 | 0.38 K |
JP-10密度 | 2.50 kg/m3 |
T0温度环己烷黏度 | 4.32 μPa·s |
p=2.0 MPa | p=3.0 MPa | p=4.0 MPa | |||||
---|---|---|---|---|---|---|---|
T/K | η/(μPa·s) | T/K | η/(μPa·s) | T/K | η/(μPa·s) | ||
326.9 | 1605.43 | 327.1 | 1588.19 | 326.6 | 1613.19 | ||
349.5 | 1139.05 | 350.4 | 1139.05 | 351.7 | 1124.82 | ||
376.4 | 808.93 | 377.6 | 815.40 | 376.6 | 836.88 | ||
400.1 | 644.97 | 401.4 | 641.91 | 402.0 | 647.21 | ||
425.7 | 516.52 | 427.1 | 517.38 | 427.4 | 519.82 | ||
450.2 | 433.51 | 452.0 | 438.02 | 452.4 | 441.02 | ||
473.3 | 377.72 | 475.4 | 376.50 | 476.6 | 376.06 | ||
501.2 | 306.59 | 503.8 | 306.19 | 504.6 | 312.49 | ||
525.8 | 266.17 | 527.4 | 266.55 | 527.2 | 271.98 | ||
554.6 | 218.34 | 556.5 | 212.97 | 557.0 | 218.35 | ||
573.1 | 189.09 | 574.7 | 190.73 | 575.4 | 196.10 | ||
596.9 | 165.20 | 598.9 | 163.11 | 599.5 | 170.53 | ||
625.1 | 126.74 | 628.7 | 138.08 | 629.2 | 141.91 | ||
661.2 | 120.62 | 668.3 | 135.11 | 665.3 | 134.56 |
表3 JP-10动力黏度测量值
Table 3 Viscosity measurement value of JP-10
p=2.0 MPa | p=3.0 MPa | p=4.0 MPa | |||||
---|---|---|---|---|---|---|---|
T/K | η/(μPa·s) | T/K | η/(μPa·s) | T/K | η/(μPa·s) | ||
326.9 | 1605.43 | 327.1 | 1588.19 | 326.6 | 1613.19 | ||
349.5 | 1139.05 | 350.4 | 1139.05 | 351.7 | 1124.82 | ||
376.4 | 808.93 | 377.6 | 815.40 | 376.6 | 836.88 | ||
400.1 | 644.97 | 401.4 | 641.91 | 402.0 | 647.21 | ||
425.7 | 516.52 | 427.1 | 517.38 | 427.4 | 519.82 | ||
450.2 | 433.51 | 452.0 | 438.02 | 452.4 | 441.02 | ||
473.3 | 377.72 | 475.4 | 376.50 | 476.6 | 376.06 | ||
501.2 | 306.59 | 503.8 | 306.19 | 504.6 | 312.49 | ||
525.8 | 266.17 | 527.4 | 266.55 | 527.2 | 271.98 | ||
554.6 | 218.34 | 556.5 | 212.97 | 557.0 | 218.35 | ||
573.1 | 189.09 | 574.7 | 190.73 | 575.4 | 196.10 | ||
596.9 | 165.20 | 598.9 | 163.11 | 599.5 | 170.53 | ||
625.1 | 126.74 | 628.7 | 138.08 | 629.2 | 141.91 | ||
661.2 | 120.62 | 668.3 | 135.11 | 665.3 | 134.56 |
分子量(M) | 临界压力/MPa | 临界温度/K | 偏心因子( |
---|---|---|---|
136.234 | 3.733 | 698.00 | 0.307 |
表4 JP-10的物理参数(挂式四氢双环戊二烯)
Table 4 Physical parameters of JP-10 (hanged tetrahydrodicyclopentadiene)
分子量(M) | 临界压力/MPa | 临界温度/K | 偏心因子( |
---|---|---|---|
136.234 | 3.733 | 698.00 | 0.307 |
a# | b# | c# | d# | AAD/% | MAD/% |
---|---|---|---|---|---|
-0.755 | 1002.697 | 0.004 | -2.95×10-6 | 1.91×10-3 | 9.86×10-3 |
表5 JP-10临界压力黏度值的经验公式拟合参数
Table 5 Empirical equation fitting parameters of JP-10 viscosity at critical pressure
a# | b# | c# | d# | AAD/% | MAD/% |
---|---|---|---|---|---|
-0.755 | 1002.697 | 0.004 | -2.95×10-6 | 1.91×10-3 | 9.86×10-3 |
压力/MPa | α | β | γ | Z | AAD/% | MAD/% |
---|---|---|---|---|---|---|
2.0 | 1.746 | 0.947 | -0.688 | 0.082~0.112 | 1.94 | 3.09 |
3.0 | 2.347 | -0.414 | 0.171 | 0.128~0.169 | 1.96 | 4.10 |
4.0 | 2.779 | -1.189 | 0.618 | 0.168~0.225 | 1.86 | 3.24 |
表6 JP-10液相黏度推算模型拟合参数和计算结果
Table 6 Fitting parameters and calculation results of JP-10 liquid viscosity calculation model
压力/MPa | α | β | γ | Z | AAD/% | MAD/% |
---|---|---|---|---|---|---|
2.0 | 1.746 | 0.947 | -0.688 | 0.082~0.112 | 1.94 | 3.09 |
3.0 | 2.347 | -0.414 | 0.171 | 0.128~0.169 | 1.96 | 4.10 |
4.0 | 2.779 | -1.189 | 0.618 | 0.168~0.225 | 1.86 | 3.24 |
1 | Edwards T. Liquid fuels and propellants for aerospace propulsion: 1903—2003[J]. Journal of Propulsion and Power, 2003, 19(6): 1089-1107. |
2 | 肖红雨, 高峰, 李宁. 再生冷却技术在超燃冲压发动机中的应用与发展[J]. 飞航导弹, 2013(8): 78-81. |
Xiao H Y, Gao F, Li N. Application and development of regenerative cooling technology in scramjet engine [J]. Aerodynamic Missile Journal, 2013(8):78-81. | |
3 | Jones J P, Kuffel L, Sorto-Ramos E, et al. Investigating the legacy of air-breathing and rocket propulsion systems [C]//AIAA Propulsion and Energy 2020 Forum. Reston, Virginia: AIAA, 2020. |
4 |
Xie G N, Xu X X, Lei X L, et al. Heat transfer behaviors of some supercritical fluids: a review[J]. Chinese Journal of Aeronautics, 2021, DOI:10.1016/j.cja.2020.12.022.
DOI |
5 | Zhu Y H, Peng W, Xu R N, et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2018, 31(10): 1929-1953. |
6 | Deng H W, Zhang C B, Xu G Q, et al. Viscosity measurements of endothermic hydrocarbon fuel from (298 to 788) K under supercritical pressure conditions[J]. Journal of Chemical & Engineering Data, 2012, 57(2): 358-365. |
7 | Xu K K, Meng H. Analyses of surrogate models for calculating thermophysical properties of aviation kerosene RP-3 at supercritical pressures[J]. Science China Techmological Sciences, 2015, 58(3):510-518. |
8 | Li B, Lee Y, Yao W, et al. Development and application of ANN model for property prediction of supercritical kerosene[J]. Computers & Fluids, 2020, 209:104665. |
9 | Liu Z H, Trusler J P M, Bi Q C. Viscosities of liquid cyclohexane and decane at temperatures between (303 and 598) K and pressures up to 4 MPa measured in a dual-capillary viscometer[J]. Journal of Chemical & Engineering Data, 2015, 60(8): 2363-2370. |
10 | Yang Z Q, Bi Q C, Guo Y, et al. Design of a gamma densitometer for hydrocarbon fuel at high temperature and supercritical pressure[J]. Journal of Chemical & Engineering Data, 2014, 59(11): 3335-3343. |
11 | Vieira dos Santos F J, Castro C A N. Viscosity of toluene and benzene under high pressur[J]. International Journal of Thermophysics, 1997, 18(2): 367-378. |
12 | Avelino H, Fareleira J, Wakeham W. Simultaneous measurement of the density and viscosity of compressed liquid toluene[J]. International Journal of Thermophysics, 2003, 24(2):323-336. |
13 | 王小杰, 朱山杉, 王晓坡, 等. 落体法流体高压液相黏度实验系统[J]. 工程热物理学报, 2020, 41(4): 788-791. |
Wang X J, Zhu S S, Wang X P, et al. Experimental system for high-pressure viscosity measurement based on the falling-body method[J]. Journal of Engineering Thermophysics, 2020, 41(4):788-791. | |
14 | Paton J M, Schaschke C J. Viscosity measurement of biodiesel at high pressure with a falling sinker viscometer [J]. Chemical Engineering Research and Design, 2009, 87(11): 1520-1526. |
15 | Wu J T, Liu Z G, Bi S S, et al. Viscosity of saturated liquid dimethyl ether from (227 to 343) K[J]. Journal of Chemical & Engineering Data, 2003, 48(2): 426-429. |
16 | 冯松, 毕勤成, 刘朝晖, 等. 采用双毛细管等流量法测量航空煤油RP-3的动力黏度[J]. 西安交通大学学报, 2017, 51(3): 48-53. |
Feng S, Bi Q C, Liu Z H, et al. Viscosity measurement of aviation kerosene RP-3 using a double-capillary viscometer with equal mass flow[J]. Journal of Xi'an Jiaotong University, 2017, 51(3):48-53. | |
17 | 杨竹强, 冯松, 潘辉, 等. 双毛细管式碳氢化合物黏度测量方法研究[J]. 西安交通大学学报, 2015, 49(7): 37-41. |
Yang Z Q, Feng S, Pan H, et al. Viscosity measurement of hydrocarbons using a two-capillary viscometer[J]. Journal of Xi'an Jiaotong University, 2015, 49(7): 37-41. | |
18 | Yang Z Q, Liu Z H, Bi Q C, et al. Viscosity measurements of hydrocarbon fuel at temperatures from (303.2 to 513.2)K and pressures up to 5.1 MPa using a two-capillary viscometer[J]. Thermochimica Acta, 2015, 617:1-7. |
19 | Miyara A, Alam M J, Kariya K. Measurement of viscosity of trans-1‑chloro‑3,3,3-trifluoropropene (R-1233zd(E)) by tandem capillary tubes method[J]. International Journal of Refrigeration, 2018, 92:86-93. |
20 | Deguchi S, Ghosh S K, Alargova R G, et al. Viscosity measurements of water at high temperatures and pressures using dynamic light scattering[J]. The Journal of Physical Chemistry B, 2006, 110(37): 18358-18362. |
21 | 曹冬冬, 郭亚军, 冯松, 等. 吸热型碳氢燃料高压低温密度测量实验研究[J]. 热能动力工程, 2017, 32(3): 28-32. |
Cao D D, Guo Y J, Feng S, et al. Experimental study on density measurement of endothermic hydrocarbon fuels under high pressure and low temperature[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(3): 28-32. | |
22 | 刘向阳, 齐雪涛, 何茂刚. 含氧燃料黏度的理论推算模型[J]. 工程热物理学报, 2016, 37(3): 471-474. |
Liu X Y, Qi X T, He M G. A viscosity model for oxygenated fuel[J]. Journal of Engineering Thermophysics, 2016, 37(3): 471-474. | |
23 | Viscosity Eyring H., plasticity, and diffusion as examples of absolute reaction rates[J]. The Journal of Chemical Physics, 1936, 4(4): 283-291. . |
24 | Martins R J, de M Cardoso M J E, Barcia O E. A new model for calculating the viscosity of pure liquids at high pressures[J]. Industrial & Engineering Chemistry Research, 2003, 42(16): 3824-3830. |
25 | Macías-Salinas R, García-Sánchez F, Hernández-Garduza O. Viscosity model for pure liquids based on Eyring theory and cubic EOS[J]. AIChE Journal, 2003, 49(3): 799-804. |
26 | Zhu C Y, Yang F, Liu X Y, et al. Viscosity of oxygenated fuel: a model based on Eyring's absolute rate theory[J]. Fuel, 2019, 241: 218-226. |
27 | Gong S Y, Zhang X W, Bi Q C, et al. Experimental measurement of JP-10 viscosity at 242.7—753.3 K under pressures up to 6.00 MPa[J]. Journal of Chemical & Engineering Data, 2017, 62(11): 3671-3678. |
28 | Tariq U, Jusoh A R B, Riesco N, et al. Reference correlation of the viscosity of cyclohexane from the triple point to 700 K and up to 110 MPa[J]. Journal of Physical and Chemical Reference Data, 2014, 43(3): 033101. |
29 | Lemmon E W, Huber M L, McLinden M O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, Standard Reference Data Program[DB]. Gaithersburg, MD: National Institute of Standards and Technology, 2013. |
30 | Bruno T J, Huber M L, Laesecke A, et al. Thermochemical and thermophysical properties of JP-10[R]. National Institute of Standards and Technology, 2006. |
31 | 韩光泽,房增科,陈明东.Eyring黏度公式的几率修正及基于液体准晶模型分子活化能的计算[J].中国科学:物理学 力学 天文学,2010,40(9):1092-1098. |
Han G Z, Fang Z K, Chen M D. Probability modification of Eyring viscosity formula and molecular activation energy calculation based on liquid quasicrystal model [J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2010, 40(9): 1092-1098. | |
32 | Lei Q F, Hou Y C, Lin R S. Correlation of viscosities of pure liquids in a wide temperature range[J]. Fluid Phase Equilibria, 1997, 140(1/2): 221-231. |
33 | Yaws C L. Chapter 3: Viscosity of liquid-organic compounds [M]//Transport Properties of Chemicals and Hydrocarbons. 2nd ed. Oxford: Gulf Publishing Company, 2014: 131-254. |
[1] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[2] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[3] | 邵伟明, 韩文学, 宋伟, 杨勇, 陈灿, 赵东亚. 基于分布式贝叶斯隐马尔可夫回归的动态软测量建模方法[J]. 化工学报, 2023, 74(6): 2495-2502. |
[4] | 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053. |
[5] | 毛元敬, 杨智, 莫松平, 郭浩, 陈颖, 罗向龙, 陈健勇, 梁颖宗. C6~C10烷醇的SAFT-VR Mie状态方程参数回归及其热物性研究[J]. 化工学报, 2023, 74(3): 1033-1041. |
[6] | 张家庆, 蒋榕培, 史伟康, 武博翔, 杨超, 刘朝晖. 煤基/石油基火箭煤油高参数黏温特性与组分特性研究[J]. 化工学报, 2023, 74(2): 653-665. |
[7] | 王永倩, 王平, 程康, 毛晨林, 刘文锋, 尹智成, Ferrante Antonio. 氨气/甲烷贫预混旋转湍流火焰稳定性及NO生成[J]. 化工学报, 2022, 73(9): 4087-4094. |
[8] | 吴子睿, 孙瑞, 石凌峰, 田华, 王轩, 舒歌群. CO2混合工质的气液相平衡的混合规则对比与预测研究[J]. 化工学报, 2022, 73(4): 1483-1492. |
[9] | 刘碧强, 曹海山. 基于流量校准的吸附测量方法及误差分析[J]. 化工学报, 2022, 73(4): 1597-1605. |
[10] | 兰文杰, 胡晓洁, 蔡迪宗. 界面探针法测量液滴与固体壁面间相互作用力[J]. 化工学报, 2022, 73(3): 1119-1126. |
[11] | 罗顺桦, 王振雷, 王昕. 基于二子空间协同训练算法的半监督软测量建模[J]. 化工学报, 2022, 73(3): 1270-1279. |
[12] | 孙裕坤, 杨焘, 吴江涛. R32+R1234yf+R1234ze(E)混合制冷剂气液相平衡实验研究[J]. 化工学报, 2022, 73(3): 1063-1071. |
[13] | 王洒, 温怡静, 郭丹煜, 周欣, 李忠. 锆基MOF次级结构单元调控及轻烃吸附分离性能增强[J]. 化工学报, 2022, 73(2): 730-738. |
[14] | 罗俊仪, 吴石亮, 肖睿. 环烷烃与航空煤油掺混燃烧特性研究[J]. 化工学报, 2022, 73(2): 847-856. |
[15] | 薛涵文, 聂峰, 赵延兴, 董学强, 郭浩, 沈俊, 公茂琼. 基于流型的R290水平管内流动沸腾压降实验研究[J]. 化工学报, 2022, 73(11): 4903-4916. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||