化工学报 ›› 2022, Vol. 73 ›› Issue (1): 162-174.DOI: 10.11949/0438-1157.20211211
收稿日期:
2021-08-23
修回日期:
2021-10-10
出版日期:
2022-01-05
发布日期:
2022-01-18
通讯作者:
张先明,冯连芳
作者简介:
成文凯(1988—), 男, 博士, 基金资助:
Wenkai CHENG1(),Xianming ZHANG1(),Jiajun WANG2,Lianfang FENG2()
Received:
2021-08-23
Revised:
2021-10-10
Online:
2022-01-05
Published:
2022-01-18
Contact:
Xianming ZHANG,Lianfang FENG
摘要:
以差速反向旋转卧式双轴捏合反应器为研究对象,选用高黏牛顿流体糖浆为模拟物料,通过三维有限元数值模拟方法研究了高黏糖浆在捏合反应器中的流动过程,获取了流速和剪切速率的空间分布,进一步结合粒子示踪技术探究了分布混合过程与混合效率,并且考察了搅拌结构对流动与混合过程的影响规律。研究表明,捏合反应器中几乎不存在流动死区,桨叶末端和重叠区域的流速和剪切速率较高,且高流速和高剪切区域均随着捏合杆数目和捏合杆长度的增加而增大。捏合杆可以推动物料在圆周方向上的运动,在重叠区域存在周期性交互作用,进而可以强化分布混合过程。拉伸率随着混合时间以指数形式增加,且随着捏合杆数目和捏合杆长度的增加而增加。时均混合效率大于零,随着捏合杆数目的增大而增大,随着捏合杆长度的增加呈现先增大后减小的趋势。
中图分类号:
成文凯, 张先明, 王嘉骏, 冯连芳. 反向旋转卧式双轴捏合反应器混合特性的数值模拟[J]. 化工学报, 2022, 73(1): 162-174.
Wenkai CHENG, Xianming ZHANG, Jiajun WANG, Lianfang FENG. Numerical simulation of mixing process in different opposite-rotating horizontal twin-shaft kneaders[J]. CIESC Journal, 2022, 73(1): 162-174.
反应器 | 搅拌单元捏合杆数目 | 搅拌转速/(r/min) | 捏合杆结构 | 圆盘 | ||
---|---|---|---|---|---|---|
左侧 | 右侧 | 左侧 | 右侧 | |||
OPK24-15 mm | 2 | 4 | 60 | 30 | 无 | |
OPK36-15 mm | 3 | 6 | 60 | 30 | 无 | |
OPK48-15 mm | 4 | 8 | 60 | 30 | 无 | |
OPK24-7 mm | 2 | 4 | 60 | 30 | 无 | |
OPK24-23 mm | 2 | 4 | 60 | 30 | 无 | |
OPK24-disk-15 mm | 2 | 4 | 60 | 30 | 光滑圆盘 |
表 1 卧式双轴捏合反应器
Table 1 Different horizontal twin-shaft kneaders
反应器 | 搅拌单元捏合杆数目 | 搅拌转速/(r/min) | 捏合杆结构 | 圆盘 | ||
---|---|---|---|---|---|---|
左侧 | 右侧 | 左侧 | 右侧 | |||
OPK24-15 mm | 2 | 4 | 60 | 30 | 无 | |
OPK36-15 mm | 3 | 6 | 60 | 30 | 无 | |
OPK48-15 mm | 4 | 8 | 60 | 30 | 无 | |
OPK24-7 mm | 2 | 4 | 60 | 30 | 无 | |
OPK24-23 mm | 2 | 4 | 60 | 30 | 无 | |
OPK24-disk-15 mm | 2 | 4 | 60 | 30 | 光滑圆盘 |
1 | Schuchardt H. Mixing apparatus: US6260995 [P]. 2001-07-17. |
2 | Schebesta K, Schuchardt H, Ullrich M. Self-cleaning reactor/mixer for highly viscous and cohesive mixing materials: US5876115[P]. 1999-03-02. |
3 | Schebesta K, Schuchardt H, Ullrich M. Self-cleaning reactor/mixer for highly viscous and solids-bearing materials to be mixed: US5658075[P]. 1997-08-19. |
4 | Schebesta K, Schuchardt H, Ullrich M. Completely self-cleaning mixer/reactor: US5669710[P]. 1997-09-23. |
5 | Schuchardt H. Multiple shaft mixing device providing full kinematic self-cleaning: US5505536[P]. 1996-04-09. |
6 | Schuchardt H, Ullrich M. Fully self-cleaning reactor/mixer with a large usable volume: US5399012[P]. 1995-03-21. |
7 | Schuchardt H, Ullrich M. Self-cleaning reactor/mixer with large useful volume: US5334358[P]. 1994-08-02. |
8 | Stueven U, van Miert L, van Esbroeck D, et al. Mixing kneader and process for preparing poly(meth)acrylates using the mixing kneader: US8070351[P]. 2011-12-06. |
9 | Fleury P, Kunkel R. Device for carrying out mechanical, chemical, and/or thermal processes: US0376327 [P]. 2014-12-25. |
10 | Palmer D. Mixing kneader: US6039469[P]. 2000-03-21. |
11 | Dötsch W, Schwenk W, Kunz A. Mixing kneader with rotating shafts and kneading bars: US5407266[P]. 1995-04-18. |
12 | List H, Schwenk W, Kunz A. Multi-spindle kneading mixer with fixed kneading counterelements: US4941130[P]. 1990-07-10. |
13 | List H. Multi-spindle kneading mixer: US4950081[P]. 1990-08-21. |
14 | List H. Multiple-spindle mixing kneader apparatus: US3689035 [P]. 1972-09-05. |
15 | 成文凯, 王嘉骏, 顾雪萍, 等. 聚合物搅拌脱挥设备及其CFD模拟研究进展[J]. 化工进展, 2016, 35(5): 1283-1288. |
Cheng W K, Wang J J, Gu X P, et al. Progress on agitated apparatus for polymer devolatilization and its CFD simulation[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1283-1288. | |
16 | 冯连芳, 张才亮, 王嘉骏,等. 聚合过程强化技术[M]. 北京: 化学工业出版社, 2020. |
Feng L F, Zhang C L, Wang J J, et al. Polymerization Process Intensification[M]. Beijing: Chemical Industry Press, 2020. | |
17 | Fleury P A, Lichti P. Process and apparatus for treating viscous products: US8678641[P]. 2014-03-25. |
18 | Belkhiria S, Fleury P A, Al-Alim I. Process for the production of SAP: US7398606[P]. 2008-07-15. |
19 | Fleury P A, Isenschmid T, Liechti P. Method for the continuous implementation of polymerisation processes: US8376607[P]. 2013-02-19. |
20 | 赵轶, 冯连芳, 顾雪萍, 等. 卧式双轴T型搅拌器在牛顿流体中的功率消耗[J]. 化学工程, 2000, 28(4): 32-35, 3. |
Zhao Y, Feng L F, Gu X P, et al. Power consumption of horizontal two-shaft T-shape self-cleaning agitator in Newtonian fluid[J]. Chemical Engineering (China), 2000, 28(4): 32-35, 3. | |
21 | 冯连芳, 赵轶, 顾雪萍, 等. 卧式双轴T型搅拌器在非牛顿流体中的搅拌功率特性[J]. 化学反应工程与工艺, 2000, 16(4): 331-336. |
Feng L F, Zhao Y, Gu X P, et al. Power consumption of horizontal two-shaft T-shape self-cleaning agitators in the non-Newtonian fluid[J]. Chemical Reaction Engineering and Technology, 2000, 16(4): 331-336. | |
22 | 付正强. 卧式双轴搅拌釜内固液两相流的数值模拟与实验研究[D]. 天津: 天津大学, 2014. |
Fu Z Q. Numerical simulation and experimental study of solid-liquid two-phase flow in horizontal biaxial stirred tank[D]. Tianjin: Tianjin University, 2014. | |
23 | 刘叶凤. 卧式双轴搅拌釜数值模拟与实验研究[D]. 天津: 天津大学, 2013. |
Liu Y F. Numerical simulation and experimental study of horizontal twin-shaft stirred tank[D]. Tianjin: Tianjin University, 2013. | |
24 | 杨腾. D-T型卧式双轴搅拌装置的数值模拟[D]. 天津: 天津大学, 2010. |
Yang T. Numerical simulation of D-T model horizontal biaxial agitated tank[D]. Tianjin: Tianjin University, 2010. | |
25 | 刘荣. 新型卧式搅拌装置特性研究与设计开发[D]. 天津: 天津大学, 2009. |
Liu R. Study on the features of horizontal stirring devices and design process[D]. Tianjin: Tianjin University, 2009. | |
26 | Seck O, Maxisch T, Warnecke H J, et al. Investigation of the mixing-and devolatilization behavior in a continuous twin-shaft kneader[J]. Macromolecular Symposia, 2010, 289(1): 155-164. |
27 | 单喜良, 马玉录, 谢林生, 等. 基于离散元方法的差动自清洁混合器混合特性研究[J]. 中国塑料, 2020, 34(4): 54-59. |
Shan X L, Ma Y L, Xie L S, et al. Study on mixing characteristics of differential self-cleaning mixer based on discrete element method[J]. China Plastics, 2020, 34(4): 54-59. | |
28 | 叶阳. 新型卧式双轴反应器的CFD模拟与传质研究[D]. 杭州: 浙江大学, 2019. |
Ye Y. CFD simulation and mass transfer study of a novel horizontal twin-shaft reactor[D]. Hangzhou: Zhejiang University, 2019. | |
29 | 成文凯. 卧式双轴搅拌脱挥设备的成膜特性与传质过程强化[D]. 杭州: 浙江大学, 2019. |
Cheng W K. Investigations of film formation characteristics and mass transfer intensification in the horizontal twin-shaft agitating devolatilizers[D]. Hangzhou: Zhejiang University, 2019. | |
30 | Cheng W K, Wang J J, Gu X P, et al. Film formation and mass transfer characteristics in a horizontal self-cleaning twin-shaft kneader with highly viscous Newtonian fluids[J]. Industrial & Engineering Chemistry Research, 2021, 60(3): 1405-1411. |
31 | Cheng W K, Ye Y, Jiang S X, et al. Mixing intensification in a horizontal self-cleaning twin-shaft kneader with a highly viscous Newtonian fluid[J]. Chemical Engineering Science, 2019, 201: 437-447. |
32 | Cheng W K, Xin S C, Chen S C, et al. Hydrodynamics and mixing process in a horizontal self-cleaning opposite-rotating twin-shaft kneader[J]. Chemical Engineering Science, 2021, 241: 116700. |
33 | Connelly R K, Kokini J L. Mixing simulation of a viscous Newtonian liquid in a twin sigma blade mixer[J]. AIChE Journal, 2006, 52(10): 3383-3393. |
34 | Connelly R K, Kokini J L. Examination of the mixing ability of single and twin screw mixers using 2D finite element method simulation with particle tracking[J]. Journal of Food Engineering, 2007, 79(3): 956-969. |
35 | Danckwerts P V. The definition and measurement of some characteristics of mixtures[J]. Applied Scientific Research, Section A, 1952, 3(4): 279-296. |
36 | Ottino J M. The Kinematics of Mixing: Stretching, Chaos, and Transport[M]. Cambridge: Cambridge University Press, 1989. |
[1] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[2] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 谈莹莹, 刘晓庆, 王林, 黄鲤生, 李修真, 王占伟. R1150/R600a自复叠制冷循环开机动态特性实验研究[J]. 化工学报, 2023, 74(S1): 213-222. |
[5] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[6] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[7] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[8] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[9] | 汪尔奇, 彭书舟, 杨震, 段远源. 含HFO混合体系气液相平衡的理论模型评价[J]. 化工学报, 2023, 74(8): 3216-3225. |
[10] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[11] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[12] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[13] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[14] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[15] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||