化工学报 ›› 2022, Vol. 73 ›› Issue (2): 730-738.doi: 10.11949/0438-1157.20210683

• 分离工程 • 上一篇    下一篇

锆基MOF次级结构单元调控及轻烃吸附分离性能增强

王洒(),温怡静,郭丹煜,周欣(),李忠   

  1. 华南理工大学化学化工学院,广东 广州 510640
  • 收稿日期:2021-05-19 修回日期:2021-10-26 出版日期:2022-02-05 发布日期:2022-02-18
  • 通讯作者: 周欣 E-mail:2603902583@qq.com;xinzhou@scut.edu.cn
  • 作者简介:王洒(1996—),女,硕士研究生,2603902583@qq.com
  • 基金资助:
    国家自然科学基金项目(21808066);广东省自然科学基金项目(2021A1515010119);中国石油科技创新基金(2020D-5007-0408)

Tuning secondary building unit of zirconium-based MOF for enhanced separation of light hydrocarbons

Sa WANG(),Yijing WEN,Danyu GUO,Xin ZHOU(),Zhong LI   

  1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2021-05-19 Revised:2021-10-26 Published:2022-02-05 Online:2022-02-18
  • Contact: Xin ZHOU E-mail:2603902583@qq.com;xinzhou@scut.edu.cn

摘要:

从天然气中回收C2/C3轻烃组分具有重要的工业价值,吸附分离技术可在常温常压下实现轻烃的回收。对MOF材料进行次级结构单元(SBU)调控,可在继承其晶体结构和发达孔道的同时,优化孔道化学微环境并引入新的吸附位点。使用三嗪(TZ)取代Zr-TBAPy(NU-1000)SBU中的配位水分子,在其孔道内构筑对轻烃吸附质具有更强限域作用的碱性表面化学微环境,得到了高选择性的新型TZ@Zr-TBAPy吸附剂。TZ的引入在分子尺度上提高了孔道的表面粗糙度,同时强化对轻烃吸附质的限域作用,提高材料对烷烃的吸附容量和选择性。常温常压下,TZ@Zr-TBAPy对丙烷和乙烷的吸附容量分别为10.08和4.19 mmol?g-1,比Zr-TBAPy提高了27%和9%,是目前国际上已报道的丙烷吸附容量最高的吸附剂之一。此外,丙烷/甲烷的IAST选择性为1518,是原材料的6.27倍;乙烷/甲烷的IAST选择性为11.7,比原材料提高了22%。更为重要的是,以TZ@Zr-TBAPy吸附剂为核心的固定床吸附过程可实现在常温常压天然气中乙烷和丙烷的一步分离回收。

关键词: 碳氢化合物, 吸附作用, 选择性, 金属-有机骨架, 次级结构单元调控

Abstract:

The recovery of C2/C3 light hydrocarbon components from natural gas has important industrial value. Adsorption separation technology can realize the recovery of light hydrocarbons under normal temperature and pressure. Tuning the secondary building unit (SBU) optimizes pore chemistry and develops new adsorption sites of MOF, while the well-defined framework can be inherited. s-Triazine (TZ) was used to replace the coordinated water molecules from the SBU of Zr-TBAPy and construct an alkaline surface chemical microenvironment that has a stronger restriction on light hydrocarbon adsorbates in its pores to obtain a highly selective TZ@Zr-TBAPy adsorbent. On the one hand, the introduction of TZ improves the surface roughness of the pores on the molecular scale; on the other hand, it strengthens the confinement effect on light hydrocarbon adsorbates, thereby increasing the adsorption capacity and selectivity for alkanes of absorbent. Under standard ambient temperature and pressure, the adsorption capacity of TZ@Zr-TBAPy for propane reaches 10.08 and 4.19 mmol?g-1, which is 27% and 9% higher than that of Zr-TBAPy. It is currently among the top adsorbents concerning propane adsorption capacity in the world. Moreover, the IAST selectivity of propane/methane is 1518, which is 6.27 times that of raw materials; the IAST selectivity of ethane/methane is 11.7, which is 22% higher than that of raw materials. In addition, the isosteric adsorption heats of TZ@Zr-TBAPy for the three alkanes follow the propane>ethane>methane, indicating that propane has a stronger affinity than methane and ethane, which is related to the preferential adsorption of propane of the material. More importantly, the fixed-bed adsorption process with TZ@Zr-TBAPy adsorbent as the core can realize the one-step separation and recovery of ethane and propane in natural gas at room temperature and pressure.

Key words: hydrocarbon, adsorption, selectivity, metal-organic framework, SBU-tuning

中图分类号: 

  • TQ 028.1

图1

TZ@Zr-TBAPy从天然气中分离乙烷和丙烷的示意图(放大图:TZ取代Zr-TBAPy的SBU上水分子形成TZ@Zr-TBAPy)"

图2

分子模拟中的孔道参数定义(a);固定床透过装置(b)"

图3

Zr-TBAPy和TZ@Zr-TBAPy的表征:(a) XRD; (b) FT-IR; (c),(d) SEM"

图4

Zr-TBAPy和TZ@Zr-TBAPy材料上77 K下的N2吸附脱附等温线(a)和孔径分布曲线(b)"

表1

Zr-TBAPy和TZ@Zr-TBAPy的BET比表面积和孔径"

吸附剂BET比表面积/(m2·g-1)总孔容,Vt/(cm3·g-1)微孔孔容,Vmicro/(cm3·g-1)介孔孔容,Vmeso/(cm3·g-1)
Zr-TBAPy22831.300.310.99
TZ@Zr-TBAPy24411.240.300.94

图5

Zr-TBAPy和TZ@Zr-TBAPy的甲烷/乙烷/丙烷吸附等温线(298 K)"

图6

甲烷、乙烷和丙烷在Zr-TBAPy(a)和TZ@Zr-TBAPy(b)上的吸附热"

表2

DSLF拟合模型的参数以及相应的决定系数"

参数Zr-TBAPyTZ@Zr-TBAPy
C3H8C2H6CH4C3H8C2H6CH4
qm,1/(mmol·g-1)8.044.491.489.496.031.66
b10.0360.00430.00230.0370.00430.0018
n11.080.880.891.380.880.81
qm,2/(mmol·g-1)4.873.301.346.213.150.60
b20.0100.00320.00160.0210.00300.0010
n21.020.821.100.850.821.04
R20.9990.9990.9990.9990.9990.999

图7

Zr-TBAPy和TZ@Zr-TBAPy对丙烷/甲烷(a)和乙烷/甲烷(b)的IAST选择性;丙烷/甲烷吸附选择性与丙烷吸附量比较(c);乙烷/甲烷吸附选择性与乙烷吸附量比较(d) (UTSA-35a和MFM-202a的测试温度分别为296和293 K)"

图8

Zr-TBAPy和TZ@Zr-TBAPy的吸附能(a)和孔道图(b)"

表3

分子模型的孔道参数"

材料GCD/?PLD/?LCD/?
Zr-TBAPy28.8427.7428.84
TZ@Zr-TBAPy26.1321.7026.12

图9

Zr-TBAPy和TZ@Zr-TBAPy对甲烷/乙烷/丙烷混合气体的固定床透过曲线"

1 Khan M I, Yasmin T, Shakoor A. Technical overview of compressed natural gas (CNG) as a transportation fuel[J]. Renewable and Sustainable Energy Reviews, 2015, 51: 785-797.
2 Shen J M, Dailly A, Beckner M. Natural gas sorption evaluation on microporous materials[J]. Microporous and Mesoporous Materials, 2016, 235: 170-177.
3 Duan J G, Jin W Q, Krishna R. Natural gas purification using a porous coordination polymer with water and chemical stability[J]. Inorganic Chemistry, 2015, 54(9): 4279-4284.
4 Ma Y X, Cui P Z, Wang Y K, et al. A review of extractive distillation from an azeotropic phenomenon for dynamic control[J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1510-1522.
5 Zhang S H, Taylor M K, Jiang L C, et al. Light hydrocarbon separations using porous organic framework materials[J]. Chemistry - A European Journal, 2020, 26(15): 3205-3221.
6 Furukawa H, Cordova K E, O'Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444.
7 崔希利, 邢华斌. 金属有机框架材料分离低碳烃的研究进展[J]. 化工学报, 2018, 69(6): 2339-2352.
Cui X L, Xing H B. Separation of light hydrocarbons with metal-organic frameworks[J]. CIESC Journal, 2018, 69(6): 2339-2352.
8 Yuan S, Feng L, Wang K C, et al. Stable metal-organic frameworks: design, synthesis, and applications[J]. Advanced Materials, 2018, 30(37): 1704303.
9 Ji P, Manna K, Lin Z, et al. Single-site cobalt catalysts at new Zr123-O)83-OH)82-OH)6 metal-organic framework nodes for highly active hydrogenation of nitroarenes, nitriles, and isocyanides [J]. Journal of the American Chemical Society, 2017, 139(20): 7004-7011.
10 Zhang Y F, Xiao H Y, Zhou X, et al. Selective adsorption performances of UiO-67 for separation of light hydrocarbons C1, C2, and C3[J]. Industrial & Engineering Chemistry Research, 2017, 56(30): 8689-8696.
11 Shi R F, Lv D, Chen Y W, et al. Highly selective adsorption separation of light hydrocarbons with a porphyrinic zirconium metal-organic framework PCN-224[J]. Separation and Purification Technology, 2018, 207: 262-268.
12 Li H, Lin Z D, Zhou X, et al. Ultrafast room temperature synthesis of novel composites Imi@Cu-BTC with improved stability against moisture[J]. Chemical Engineering Journal, 2017, 307: 537-543.
13 Lin Z D, Lv Z, Zhou X, et al. Postsynthetic strategy to prepare ACN@Cu-BTCs with enhanced water vapor stability and CO2/CH4 separation selectivity[J]. Industrial & Engineering Chemistry Research, 2018, 57(10): 3765-3772.
14 Wu Y F, Lv Z, Zhou X, et al. Tuning secondary building unit of Cu-BTC to simultaneously enhance its CO2 selective adsorption and stability under moisture[J]. Chemical Engineering Journal, 2019, 355: 815-821.
15 Mondloch J E, Bury W, Fairen-Jimenez D, et al. Vapor-phase metalation by atomic layer deposition in a metal-organic framework[J]. Journal of the American Chemical Society, 2013, 135(28): 10294-10297.
16 Feng D W, Gu Z Y, Li J R, et al. Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts[J]. Angewandte Chemie, 2012, 124(41): 10453-10456.
17 Planas N, Mondloch J E, Tussupbayev S, et al. Defining the proton topology of the Zr6-based metal–organic framework NU-1000[J]. The Journal of Physical Chemistry Letters, 2014, 5(21): 3716-3723.
18 Rappe A K, Casewit C J, Colwell K S, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[J]. Journal of the American Chemical Society, 1992, 114(25): 10024-10035.
19 Rappe A K, Goddard W A. Charge equilibration for molecular dynamics simulations[J]. The Journal of Physical Chemistry, 1991, 95(8): 3358-3363.
20 王磊, 方桂英, 阳庆元. 金属-有机骨架材料CO2捕获性能的大规模计算筛选[J]. 化工学报, 2019, 70(3): 1135-1143.
Wang L, Fang G Y, Yang Q Y. Performance of metal-organic frameworks for CO2 capture from large-scale computational screening[J]. CIESC Journal, 2019, 70(3): 1135-1143.
21 Thommes M, Kaneko K, Neimark A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069.
22 Myers A L, Prausnitz J M. Thermodynamics of mixed-gas adsorption[J]. AIChE Journal, 1965, 11(1): 121-127.
23 Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2042.
24 He Y, Zhang Z, Xiang S, et al. A robust doubly interpenetrated metal-organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons[J]. Chemical Communications, 2012, 48(52): 6493-6495.
25 Zhang M H, Xin X L, Xiao Z Y, et al. A multi-aromatic hydrocarbon unit induced hydrophobic metal–organic framework for efficient C2/C1 hydrocarbon and oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5(3): 1168-1175.
26 Luo J H, Wang J, Cao Y, et al. Assembly of an indium–porphyrin framework JLU-Liu7: a mesoporous metal–organic framework with high gas adsorption and separation of light hydrocarbons[J]. Inorganic Chemistry Frontiers, 2017, 4(1): 139-143.
27 Jia J T, Wang L, Sun F X, et al. The adsorption and simulated separation of light hydrocarbons in isoreticular metal-organic frameworks based on dendritic ligands with different aliphatic side chains[J]. Chemistry - A European Journal, 2014, 20(29): 9073-9080.
28 Gao S, Morris C G, Lu Z Z, et al. Selective hysteretic sorption of light hydrocarbons in a flexible metal–organic framework material[J]. Chemistry of Materials, 2016, 28(7): 2331-2340.
29 Li J T, Luo X L, Zhao N, et al. Two finite binuclear [M22-OH)(COO)2] (M = Co, Ni) based highly porous metal–organic frameworks with high performance for gas sorption and separation[J]. Inorganic Chemistry, 2017, 56(7): 4141-4147.
30 Wang D M, Liu B, Yao S, et al. A polyhedral metal-organic framework based on the supermolecular building block strategy exhibiting high performance for carbon dioxide capture and separation of light hydrocarbons[J]. Chemical Communications, 2015, 51(83): 15287-15289.
31 Han G P, Wang K K, Peng Y G, et al. Enhancing higher hydrocarbons capture for natural gas upgrading by tuning van der Waals interactions in fcu-type Zr-MOFs[J]. Industrial & Engineering Chemistry Research, 2017, 56(49): 14633-14641.
[1] 苏晨昱, 杨颖, 宋兴福. 岩盐矿提钾老卤中溴离子选择性电氧化过程研究[J]. 化工学报, 2022, 73(7): 3007-3017.
[2] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[3] 刘学安, 汤丽怡, 覃健, 唐大江, 童张法, 曲慧颖. 热解Ni/Co-ZIF-8制备碳纳米管桥连多孔碳及其在超级电容器中的应用[J]. 化工学报, 2022, 73(7): 3287-3297.
[4] 朱嫣然, 葛亮, 李兴亚, 徐铜文. 三相结构离子交换膜的构筑及应用研究[J]. 化工学报, 2022, 73(6): 2397-2414.
[5] 杨珊珊, 姚宇洋, 董云迪, 徐志鹏, 高尚上, 阮慧敏, 沈江南. 基于二苯并-18-冠-6基体改性的K+选择性离子交换膜的制备及性能研究[J]. 化工学报, 2022, 73(4): 1781-1793.
[6] 罗俊仪, 吴石亮, 肖睿. 环烷烃与航空煤油掺混燃烧特性研究[J]. 化工学报, 2022, 73(2): 847-856.
[7] 蒋晨啸, 陈秉伦, 张东钰, 葛亮, 汪耀明, 徐铜文. 我国盐湖锂资源分离提取进展[J]. 化工学报, 2022, 73(2): 481-503.
[8] 张家庆, 刘朝晖, 李宇, 宋晨阳. 碳氢燃料JP-10高温液态黏度测量和推算模型构建方法研究[J]. 化工学报, 2022, 73(1): 153-161.
[9] 温怡静, 张博, 陈晓霏, 赵思洋, 周欣, 黄艳, 李忠. 多孔炭吸附剂的乙烯-乙烷选择性反转机制[J]. 化工学报, 2021, 72(9): 4768-4774.
[10] 王伟, 钱伟鑫, 马宏方, 应卫勇, 张海涛. 吡啶修饰H-MOR上二甲醚羰基化吸附-扩散理论研究[J]. 化工学报, 2021, 72(9): 4786-4795.
[11] 李泽严, 樊星, 李坚. 非热等离子体强化TiO2催化尿素分解副产物水解性能的研究[J]. 化工学报, 2021, 72(9): 4698-4707.
[12] 耿晨旭, 孙玉绣, 黄宏亮, 郭翔宇, 乔志华, 仲崇立. 机械化学法合成小尺寸MOF填料助力高性能CO2分离[J]. 化工学报, 2021, 72(9): 4750-4758.
[13] 戴琼斌, 刘宏斌, 夏启斌, 周欣, 李忠. 一种新的颗粒炭材料的制备及其高效分离甲烷氮气性能[J]. 化工学报, 2021, 72(8): 4196-4203.
[14] 于瑞广, 刘杰, 马彪. 甲醇对丙烷/氧气混合气爆炸极限的影响[J]. 化工学报, 2021, 72(6): 3411-3420.
[15] 梁兴唐, 李凤枝, 钟书明, 张瑞瑞, 焦淑菲, 汪双双, 尹艳镇. 聚乙烯亚胺原位改性多孔灯芯草高效吸附废水中的Cr(Ⅵ)[J]. 化工学报, 2021, 72(6): 3380-3389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!