化工学报 ›› 2022, Vol. 73 ›› Issue (2): 792-800.doi: 10.11949/0438-1157.20211281
Peng WEI(),Jun CHEN(
),Zhiguo WANG,Fei LIU
摘要:
在模拟移动床的实际工作过程中,由于进料浓度和温度变化以及色谱柱填充不一致等因素影响,初始工艺参数作业下的分离性能可能会出现下降。首先对模拟移动床的机理模型进行了分析;然后在色谱分离平衡理论的基础上,使用有限元正交配置法求解模型得到新的工艺参数点;最后以果葡糖浆组分分离为对象,使用所提方法求解有扰动作用时的优化工艺参数,结果显示果糖纯度的合格率从81%提高到99%,证明其具有良好的鲁棒性。
中图分类号:
1 | 刘斌杰. 模拟移动床分离红霉素A和红霉素C的研究[D]. 上海: 华东理工大学, 2019. |
Liu B J. Separation of erythromycin A and erythromycin C by simulated moving bed process[D]. Shanghai: East China University of Science and Technology, 2019. | |
2 | Broughton D, Gerhold C. Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets: US2985589[P]. 1961. |
3 | 胡蓉. 二甲苯吸附分离过程建模与优化[D]. 上海: 华东理工大学, 2015. |
Hu R. Modeling and optimization of xylene adsorption separation process[D]. Shanghai: East China University of Science and Technology, 2015. | |
4 | Aniceto J P S, Silva C M. Simulated moving bed strategies and designs: from established systems to the latest developments[J]. Separation & Purification Reviews, 2015, 44(1): 41-73. |
5 | Kim K M, Han K W, Kim S I, et al. Simulated moving bed with a product column for improving the separation performance[J]. Journal of Industrial and Engineering Chemistry, 2020, 88: 328-338. |
6 | Klatt K U, Hanisch F, Dünnebier G. Model-based control of a simulated moving bed chromatographic process for the separation of fructose and glucose[J]. Journal of Process Control, 2002, 12(2): 203-219. |
7 | Lee J, Shin N C, Lim Y, et al. Modeling and simulation of a simulated moving bed for adsorptive para-xylene separation[J]. Korean Journal of Chemical Engineering, 2010, 27(2): 609-618. |
8 | van Duc Long N, Le T H, Kim J I, et al. Separation of D-psicose and D-fructose using simulated moving bed chromatography[J]. Journal of Separation Science, 2009, 32(11): 1987-1995. |
9 | Ribeiro A E, Gomes P S, Pais L S, et al. Chiral separation of ketoprofen enantiomers by preparative and simulated moving bed chromatography[J]. Separation Science and Technology, 2011, 46(11): 1726-1739. |
10 | Li Y, Yu W F, Ding Z Y, et al. Equilibrium and kinetic differences of XOS2-XOS7 in xylo-oligosaccharides and their effects on the design of simulated moving bed purification process[J]. Separation and Purification Technology, 2019, 215: 360-367. |
11 | Sulaymon A H, Abid B A, Al-Najar J A. Removal of lead copper chromium and cobalt ions onto granular activated carbon in batch and fixed-bed adsorbers[J]. Chemical Engineering Journal, 2009, 155(3): 647-653. |
12 | Li Y, Ding Z Y, Wang J, et al. A comparison between simulated moving bed and sequential simulated moving bed system based on multi-objective optimization[J]. Chemical Engineering Science, 2020, 219: 115562. |
13 | Shen Y H, Fu Q, Zhang D H, et al. A systematic simulation and optimization of an industrial-scale p-xylene simulated moving bed process[J]. Separation and Purification Technology, 2018, 191: 48-60. |
14 | Li Y, Xu J, Yu W F, et al. Multi-objective optimization of sequential simulated moving bed for the purification of xylo-oligosaccharides[J]. Chemical Engineering Science, 2020, 211: 115279. |
15 | Matos J, Faria R P V, Nogueira I B R, et al. Optimization strategies for chiral separation by true moving bed chromatography using particles swarm optimization (PSO) and new parallel PSO variant[J]. Computers & Chemical Engineering, 2019, 123: 344-356. |
16 | 胡蓉, 杨明磊, 钱锋. 基于多目标教学优化算法在二甲苯吸附分离过程优化中的应用[J]. 化工学报, 2015, 66(1): 326-332. |
Hu R, Yang M L, Qian F. Optimization of xylene adsorption separation process based on multi-objective teaching-learning-based optimization algorithm[J]. CIESC Journal, 2015, 66(1): 326-332. | |
17 | Degerman M, Jakobsson N, Nilsson B. Designing robust preparative purification processes with high performance[J]. Chemical Engineering & Technology, 2008, 31(6): 875-882. |
18 | Borg N, Westerberg K, Andersson N, et al. Effects of uncertainties in experimental conditions on the estimation of adsorption model parameters in preparative chromatography[J]. Computers & Chemical Engineering, 2013, 55: 148-157. |
19 | Nestola P, Silva R J S, Peixoto C, et al. Robust design of adenovirus purification by two-column, simulated moving-bed, size-exclusion chromatography[J]. Journal of Biotechnology, 2015, 213: 109-119. |
20 | Palani S, Gueorguieva L, Rinas U, et al. Recombinant protein purification using gradient-assisted simulated moving bed hydrophobic interaction chromatography(I): Selection of chromatographic system and estimation of adsorption isotherms[J]. Journal of Chromatography A, 2011, 1218(37): 6396-6401. |
21 | Degerman M, Westerberg K, Nilsson B. A model-based approach to determine the design space of preparative chromatography[J]. Chemical Engineering & Technology, 2009, 32(8): 1195-1202. |
22 | Minceva M, Rodrigues A E. Modeling and simulation of a simulated moving bed for the separation of p-xylene[J]. Industrial & Engineering Chemistry Research, 2002, 41(14): 3454-3461. |
23 | Silva A D, Mariani V C, de Souza A A U, et al. Numerical study of n-pentane separation using adsorption column[J]. Brazilian Archives of Biology and Technology, 2005, 48(s): 267-274. |
24 | Araújo J M M, Rodrigues R C R, Mota J P B. Use of single-column models for efficient computation of the periodic state of a simulated moving-bed process[J]. Industrial & Engineering Chemistry Research, 2006, 45(15): 5314-5325. |
25 | Cui S X, Gao G, Jiang L J, et al. Non-matching grid interface treatment for the space-time conservation element and solution element method[J]. Procedia Engineering, 2012, 31: 1115-1124. |
26 | Arora S, Dhaliwal S S, Kukreja V K. Solution of two point boundary value problems using orthogonal collocation on finite elements[J]. Applied Mathematics and Computation, 2005, 171(1): 358-370. |
27 | Arora S, Dhaliwal S S, Kukreja V K. Simulation of washing of packed bed of porous particles by orthogonal collocation on finite elements[J]. Computers & Chemical Engineering, 2006, 30(6/7): 1054-1060. |
28 | Storti G, Mazzotti M, Morbidelli M, et al. Robust design of binary countercurrent adsorption separation processes[J]. AIChE Journal, 1993, 39(3): 471-492. |
29 | Beyer P L, Caviar E M, McCallum R W. Fructose intake at current levels in the United States may cause gastrointestinal distress in normal adults[J]. Journal of the American Dietetic Association, 2005, 105(10): 1559-1566. |
30 | Katsuo S, Mazzotti M. Intermittent simulated moving bed chromatography(Ⅱ): Separation of Tröger's base enantiomers[J]. Journal of Chromatography A, 2010, 1217(18): 3067-3075. |
31 | 沈圆辉. 对二甲苯模拟移动床分离过程的模拟与优化[D]. 天津: 天津大学, 2016. |
Shen Y H. Simulation and optimization of simulated moving bed process for p-xylene separation[D]. Tianjin: Tianjin University, 2016. |
[1] | 宋健斐, 孙立强, 解明, 魏耀东. 旋风分离器内气相旋转流不稳定性的实验研究[J]. 化工学报, 2022, 73(7): 2858-2864. |
[2] | 陈玉弓, 陈昊, 黄耀松. 基于分子反应动力学模拟的六甲基二硅氧烷热解机理研究[J]. 化工学报, 2022, 73(7): 2844-2857. |
[3] | 王立维, 王娟娟, 王永洪, 张新儒, 李晋平. 聚乙烯胺/Cu3(BTC)2-MMT-NH2混合基质膜的制备及气体传递性能[J]. 化工学报, 2022, 73(7): 3068-3077. |
[4] | 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173. |
[5] | 于喆淼, 王志, 生梦龙, 邢广宇, 王纪孝. 界面聚合法制备用于脱氮提纯CH4的N2优先渗透ZIF-90/聚酰胺混合基质膜[J]. 化工学报, 2022, 73(7): 3273-3286. |
[6] | 魏朋, 陈珺, 王志国, 刘飞. 基于双部分丢弃的模拟移动床产率提高策略[J]. 化工学报, 2022, 73(7): 3099-3108. |
[7] | 万景, 张霖, 樊亚超, 刘勰民, 骆培成, 张锋, 张志炳. 基于介尺度PBM模型的生物反应器放大模拟及实验研究[J]. 化工学报, 2022, 73(6): 2698-2707. |
[8] | 白文轩, 陈锦湘, 刘芬, 张静淙, 谷志平, 熊成铭, 施王军, 余江. 非水相金属基离子液体湿法氧化脱硫工艺:发展与展望[J]. 化工学报, 2022, 73(5): 1847-1862. |
[9] | 刘鑫, 潘阳, 刘公平, 方静, 李春利, 李浩. 渗透汽化-隔壁塔精馏耦合初步分离费托合成水的过程研究[J]. 化工学报, 2022, 73(5): 2020-2030. |
[10] | 王江丽, 薛敏, 赵承科, 岳凤霞. 木质素分级对其应用性能的影响[J]. 化工学报, 2022, 73(5): 1894-1907. |
[11] | 侯起旺, 文兆伦, 张忠林, 刘叶刚, 杨景轩, 陈东良, 郝晓刚, 官国清. 一种煤基多联产碳循环系统的设计及评价[J]. 化工学报, 2022, 73(5): 2073-2082. |
[12] | 孟文亮, 李贵贤, 周怀荣, 李婧玮, 王健, 王可, 范学英, 王东亮. 绿氢重构的粉煤气化煤制甲醇近零碳排放工艺研究[J]. 化工学报, 2022, 73(4): 1714-1723. |
[13] | 张淑君, 王诗慧, 张欣, 吉旭, 戴一阳, 党亚固, 周利. 集成轻烃回收单元代理模型的氢气网络多目标优化[J]. 化工学报, 2022, 73(4): 1658-1672. |
[14] | 张欣, 周利, 王诗慧, 吉旭, 毕可鑫. 考虑原油性质波动的炼厂氢气网络集成优化[J]. 化工学报, 2022, 73(4): 1631-1646. |
[15] | 殷海青, 马祎明, 万旭兴, 董伟兵, 张玉龙, 吴送姑. 碳酸锂气液固三相反应结晶过程研究[J]. 化工学报, 2022, 73(3): 1207-1220. |
|