化工学报 ›› 2022, Vol. 73 ›› Issue (2): 792-800.doi: 10.11949/0438-1157.20211281

• 过程系统工程 • 上一篇    下一篇

基于平衡理论的模拟移动床工艺参数鲁棒寻优

魏朋(),陈珺(),王志国,刘飞   

  1. 江南大学轻工过程先进控制教育部重点实验室,江苏 无锡 214122
  • 收稿日期:2021-09-03 修回日期:2021-10-30 出版日期:2022-02-05 发布日期:2022-02-18
  • 通讯作者: 陈珺 E-mail:6191913036@stu.jiangnan.edu.cn;chenjun1860@126.com
  • 作者简介:魏朋(1995—),男,硕士研究生,6191913036@stu.jiangnan.edu.cn
  • 基金资助:
    江苏省自然科学基金项目(61773183)

Robust optimization of process parameters of simulated moving bed based on equilibrium theory

Peng WEI(),Jun CHEN(),Zhiguo WANG,Fei LIU   

  1. Key Laboratory of Advanced Control for Light Industry Process of the Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China
  • Received:2021-09-03 Revised:2021-10-30 Published:2022-02-05 Online:2022-02-18
  • Contact: Jun CHEN E-mail:6191913036@stu.jiangnan.edu.cn;chenjun1860@126.com

摘要:

在模拟移动床的实际工作过程中,由于进料浓度和温度变化以及色谱柱填充不一致等因素影响,初始工艺参数作业下的分离性能可能会出现下降。首先对模拟移动床的机理模型进行了分析;然后在色谱分离平衡理论的基础上,使用有限元正交配置法求解模型得到新的工艺参数点;最后以果葡糖浆组分分离为对象,使用所提方法求解有扰动作用时的优化工艺参数,结果显示果糖纯度的合格率从81%提高到99%,证明其具有良好的鲁棒性。

关键词: 模拟移动床, 色谱, 分离, 有限元正交配置法, 平衡理论, 鲁棒, 优化设计

Abstract:

In the actual working process of the simulated moving bed, due to the influence of factors such as the feed concentration and temperature change and the inconsistent packing of the chromatographic column, the separation performance under the operation of the initial process parameters may be reduced. The paper first analyzed the mechanism model of the simulated moving bed. Then based on the equilibrium theory of chromatographic separation, a new process parameters point is obtained by using the orthogonal collocation on finite elements method. Finally, taking the separation of fructose syrup as the object, the optimized process parameters under disturbed operation were obtained by the proposed method. The results show that the pass rate of fructose purity increased from 81% to 99%, which proved that the method has good robustness.

Key words: simulated moving bed, chromatography, separation, orthogonal collocation on finite elements, equilibrium theory, robust, optimal design

中图分类号: 

  • TQ 028.8

图1

传统模拟移动床操作示意图"

图2

有限元上的正交配置"

图3

线性吸附等温线描述的系统在m2-m3平面上的不同分离区域"

图4

模拟移动床的寻优求解流程图"

表1

模拟移动床模型参数及工艺参数"

模型参数工艺参数
柱分布结构2-2-2-2A的进料浓度0.5 g/ml
组分数2B的进料浓度0.5 g/ml
柱长53.6 cm进料液流量0.0200 ml/s
柱直径2.6 cm洗脱液流量0.0414 ml/s
空隙率0.38提取液流量0.0348 ml/s
轴向扩散系数0.0381 cm2/s提余液流量0.0266 ml/s
A的Henry系数0.54循环液流量0.0981 ml/s
B的Henry系数0.28切换时间1552 s

图5

模拟移动床的运行过程(各子图均为每个运行周期末尾时刻的浓度分布)"

图6

模拟移动床的稳态浓度分布(稳态下每个切换周期末尾时刻的浓度分布)"

图7

随机扰动作用下生成的300组正态分布值(L,ε)运行在初始工艺参数下得到的产品纯度和回收率(图(a)和(b)中的蓝点代表各自的性能达标,红点代表未达标;图(c)中的红点代表模型参数的原始值,蓝点代表正态分布值)"

图8

初始工艺参数下样本点(L,ε)对应的流量比在m2-m3平面上的分布(红点代表落在了完全分离区域的外面,蓝点代表落在了完全分离区域的里面)"

图9

鲁棒工艺参数下样本点(L,ε)对应的流量比在m2-m3平面上的分布(红点代表落在了完全分离区域的外面,蓝点代表落在了完全分离区域的里面)"

图10

随机扰动作用下生成的300组正态分布值(L,ε)运行在鲁棒工艺参数下得到的产品纯度和回收率(图(a)和(b)中的蓝点代表各自的性能达标,红点代表未达标;图(c)中的红点代表模型参数的原始值,蓝点代表正态分布值)"

1 刘斌杰. 模拟移动床分离红霉素A和红霉素C的研究[D]. 上海: 华东理工大学, 2019.
Liu B J. Separation of erythromycin A and erythromycin C by simulated moving bed process[D]. Shanghai: East China University of Science and Technology, 2019.
2 Broughton D, Gerhold C. Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets: US2985589[P]. 1961.
3 胡蓉. 二甲苯吸附分离过程建模与优化[D]. 上海: 华东理工大学, 2015.
Hu R. Modeling and optimization of xylene adsorption separation process[D]. Shanghai: East China University of Science and Technology, 2015.
4 Aniceto J P S, Silva C M. Simulated moving bed strategies and designs: from established systems to the latest developments[J]. Separation & Purification Reviews, 2015, 44(1): 41-73.
5 Kim K M, Han K W, Kim S I, et al. Simulated moving bed with a product column for improving the separation performance[J]. Journal of Industrial and Engineering Chemistry, 2020, 88: 328-338.
6 Klatt K U, Hanisch F, Dünnebier G. Model-based control of a simulated moving bed chromatographic process for the separation of fructose and glucose[J]. Journal of Process Control, 2002, 12(2): 203-219.
7 Lee J, Shin N C, Lim Y, et al. Modeling and simulation of a simulated moving bed for adsorptive para-xylene separation[J]. Korean Journal of Chemical Engineering, 2010, 27(2): 609-618.
8 van Duc Long N, Le T H, Kim J I, et al. Separation of D-psicose and D-fructose using simulated moving bed chromatography[J]. Journal of Separation Science, 2009, 32(11): 1987-1995.
9 Ribeiro A E, Gomes P S, Pais L S, et al. Chiral separation of ketoprofen enantiomers by preparative and simulated moving bed chromatography[J]. Separation Science and Technology, 2011, 46(11): 1726-1739.
10 Li Y, Yu W F, Ding Z Y, et al. Equilibrium and kinetic differences of XOS2-XOS7 in xylo-oligosaccharides and their effects on the design of simulated moving bed purification process[J]. Separation and Purification Technology, 2019, 215: 360-367.
11 Sulaymon A H, Abid B A, Al-Najar J A. Removal of lead copper chromium and cobalt ions onto granular activated carbon in batch and fixed-bed adsorbers[J]. Chemical Engineering Journal, 2009, 155(3): 647-653.
12 Li Y, Ding Z Y, Wang J, et al. A comparison between simulated moving bed and sequential simulated moving bed system based on multi-objective optimization[J]. Chemical Engineering Science, 2020, 219: 115562.
13 Shen Y H, Fu Q, Zhang D H, et al. A systematic simulation and optimization of an industrial-scale p-xylene simulated moving bed process[J]. Separation and Purification Technology, 2018, 191: 48-60.
14 Li Y, Xu J, Yu W F, et al. Multi-objective optimization of sequential simulated moving bed for the purification of xylo-oligosaccharides[J]. Chemical Engineering Science, 2020, 211: 115279.
15 Matos J, Faria R P V, Nogueira I B R, et al. Optimization strategies for chiral separation by true moving bed chromatography using particles swarm optimization (PSO) and new parallel PSO variant[J]. Computers & Chemical Engineering, 2019, 123: 344-356.
16 胡蓉, 杨明磊, 钱锋. 基于多目标教学优化算法在二甲苯吸附分离过程优化中的应用[J]. 化工学报, 2015, 66(1): 326-332.
Hu R, Yang M L, Qian F. Optimization of xylene adsorption separation process based on multi-objective teaching-learning-based optimization algorithm[J]. CIESC Journal, 2015, 66(1): 326-332.
17 Degerman M, Jakobsson N, Nilsson B. Designing robust preparative purification processes with high performance[J]. Chemical Engineering & Technology, 2008, 31(6): 875-882.
18 Borg N, Westerberg K, Andersson N, et al. Effects of uncertainties in experimental conditions on the estimation of adsorption model parameters in preparative chromatography[J]. Computers & Chemical Engineering, 2013, 55: 148-157.
19 Nestola P, Silva R J S, Peixoto C, et al. Robust design of adenovirus purification by two-column, simulated moving-bed, size-exclusion chromatography[J]. Journal of Biotechnology, 2015, 213: 109-119.
20 Palani S, Gueorguieva L, Rinas U, et al. Recombinant protein purification using gradient-assisted simulated moving bed hydrophobic interaction chromatography(I): Selection of chromatographic system and estimation of adsorption isotherms[J]. Journal of Chromatography A, 2011, 1218(37): 6396-6401.
21 Degerman M, Westerberg K, Nilsson B. A model-based approach to determine the design space of preparative chromatography[J]. Chemical Engineering & Technology, 2009, 32(8): 1195-1202.
22 Minceva M, Rodrigues A E. Modeling and simulation of a simulated moving bed for the separation of p-xylene[J]. Industrial & Engineering Chemistry Research, 2002, 41(14): 3454-3461.
23 Silva A D, Mariani V C, de Souza A A U, et al. Numerical study of n-pentane separation using adsorption column[J]. Brazilian Archives of Biology and Technology, 2005, 48(s): 267-274.
24 Araújo J M M, Rodrigues R C R, Mota J P B. Use of single-column models for efficient computation of the periodic state of a simulated moving-bed process[J]. Industrial & Engineering Chemistry Research, 2006, 45(15): 5314-5325.
25 Cui S X, Gao G, Jiang L J, et al. Non-matching grid interface treatment for the space-time conservation element and solution element method[J]. Procedia Engineering, 2012, 31: 1115-1124.
26 Arora S, Dhaliwal S S, Kukreja V K. Solution of two point boundary value problems using orthogonal collocation on finite elements[J]. Applied Mathematics and Computation, 2005, 171(1): 358-370.
27 Arora S, Dhaliwal S S, Kukreja V K. Simulation of washing of packed bed of porous particles by orthogonal collocation on finite elements[J]. Computers & Chemical Engineering, 2006, 30(6/7): 1054-1060.
28 Storti G, Mazzotti M, Morbidelli M, et al. Robust design of binary countercurrent adsorption separation processes[J]. AIChE Journal, 1993, 39(3): 471-492.
29 Beyer P L, Caviar E M, McCallum R W. Fructose intake at current levels in the United States may cause gastrointestinal distress in normal adults[J]. Journal of the American Dietetic Association, 2005, 105(10): 1559-1566.
30 Katsuo S, Mazzotti M. Intermittent simulated moving bed chromatography(Ⅱ): Separation of Tröger's base enantiomers[J]. Journal of Chromatography A, 2010, 1217(18): 3067-3075.
31 沈圆辉. 对二甲苯模拟移动床分离过程的模拟与优化[D]. 天津: 天津大学, 2016.
Shen Y H. Simulation and optimization of simulated moving bed process for p-xylene separation[D]. Tianjin: Tianjin University, 2016.
[1] 宋健斐, 孙立强, 解明, 魏耀东. 旋风分离器内气相旋转流不稳定性的实验研究[J]. 化工学报, 2022, 73(7): 2858-2864.
[2] 陈玉弓, 陈昊, 黄耀松. 基于分子反应动力学模拟的六甲基二硅氧烷热解机理研究[J]. 化工学报, 2022, 73(7): 2844-2857.
[3] 王立维, 王娟娟, 王永洪, 张新儒, 李晋平. 聚乙烯胺/Cu3(BTC)2-MMT-NH2混合基质膜的制备及气体传递性能[J]. 化工学报, 2022, 73(7): 3068-3077.
[4] 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173.
[5] 于喆淼, 王志, 生梦龙, 邢广宇, 王纪孝. 界面聚合法制备用于脱氮提纯CH4的N2优先渗透ZIF-90/聚酰胺混合基质膜[J]. 化工学报, 2022, 73(7): 3273-3286.
[6] 魏朋, 陈珺, 王志国, 刘飞. 基于双部分丢弃的模拟移动床产率提高策略[J]. 化工学报, 2022, 73(7): 3099-3108.
[7] 万景, 张霖, 樊亚超, 刘勰民, 骆培成, 张锋, 张志炳. 基于介尺度PBM模型的生物反应器放大模拟及实验研究[J]. 化工学报, 2022, 73(6): 2698-2707.
[8] 白文轩, 陈锦湘, 刘芬, 张静淙, 谷志平, 熊成铭, 施王军, 余江. 非水相金属基离子液体湿法氧化脱硫工艺:发展与展望[J]. 化工学报, 2022, 73(5): 1847-1862.
[9] 刘鑫, 潘阳, 刘公平, 方静, 李春利, 李浩. 渗透汽化-隔壁塔精馏耦合初步分离费托合成水的过程研究[J]. 化工学报, 2022, 73(5): 2020-2030.
[10] 王江丽, 薛敏, 赵承科, 岳凤霞. 木质素分级对其应用性能的影响[J]. 化工学报, 2022, 73(5): 1894-1907.
[11] 侯起旺, 文兆伦, 张忠林, 刘叶刚, 杨景轩, 陈东良, 郝晓刚, 官国清. 一种煤基多联产碳循环系统的设计及评价[J]. 化工学报, 2022, 73(5): 2073-2082.
[12] 孟文亮, 李贵贤, 周怀荣, 李婧玮, 王健, 王可, 范学英, 王东亮. 绿氢重构的粉煤气化煤制甲醇近零碳排放工艺研究[J]. 化工学报, 2022, 73(4): 1714-1723.
[13] 张淑君, 王诗慧, 张欣, 吉旭, 戴一阳, 党亚固, 周利. 集成轻烃回收单元代理模型的氢气网络多目标优化[J]. 化工学报, 2022, 73(4): 1658-1672.
[14] 张欣, 周利, 王诗慧, 吉旭, 毕可鑫. 考虑原油性质波动的炼厂氢气网络集成优化[J]. 化工学报, 2022, 73(4): 1631-1646.
[15] 殷海青, 马祎明, 万旭兴, 董伟兵, 张玉龙, 吴送姑. 碳酸锂气液固三相反应结晶过程研究[J]. 化工学报, 2022, 73(3): 1207-1220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!