化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3099-3108.doi: 10.11949/0438-1157.20220108

• 分离工程 • 上一篇    下一篇

基于双部分丢弃的模拟移动床产率提高策略

魏朋(),陈珺(),王志国,刘飞   

  1. 江南大学轻工过程先进控制教育部重点实验室,江苏 无锡 214122
  • 收稿日期:2022-01-19 修回日期:2022-03-19 出版日期:2022-07-05 发布日期:2022-08-01
  • 通讯作者: 陈珺 E-mail:6191913036@stu.jiangnan.edu.cn;chenjun1860@126.com
  • 作者简介:魏朋(1995—),男,硕士研究生,6191913036@stu.jiangnan.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(61773183)

Improved productivity strategy of simulated moving bed based on binary-partial-discard

Peng WEI(),Jun CHEN(),Zhiguo WANG,Fei LIU   

  1. Key Laboratory of Advanced Control for Light Industry Process of the Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China
  • Received:2022-01-19 Revised:2022-03-19 Published:2022-07-05 Online:2022-08-01
  • Contact: Jun CHEN E-mail:6191913036@stu.jiangnan.edu.cn;chenjun1860@126.com

摘要:

在保证产品纯度的情况下,提出一种带额外色谱柱的双部分丢弃策略以提高模拟移动床的产率。通过将工艺点选取在纯提取产品和非纯提余产品区域以增大进料流量,并将由此导致的含较多杂质的提余产品暂时丢弃。丢弃的提余产品作为循环进料通入到一个额外色谱柱中以进一步分离,部分不能达到指定纯度的额外产品被永久丢弃。在模拟移动床和额外色谱柱处分别收集到的产品组成总产品。分析了工艺点的选取、提余产品的积分纯度阈值和额外产品的积分纯度阈值对总产品性能参数的影响。研究结果表明,所提策略能够以较高的回收率利用原料,且能够显著提高分离过程的产率,其分离效果优于传统的模拟移动床工艺和部分丢弃策略。

关键词: 模拟移动床, 色谱, 产率, 平衡理论, 额外色谱柱, 部分丢弃, 优化设计

Abstract:

Under the condition of ensuring the purity of products, an extra-column and binary-partial-discard strategy is proposed to improve the productivity of the simulated moving bed. The process point is selected in the area of pure extract products and non-pure raffinate products to increase the feed flow, and the raffinate products with more impurities is temporarily discarded. The discarded raffinate products is fed as a recycling feed into an extra chromatographic column for further separation, some extra products that cannot reach the specified purity are permanently discarded. In this way, the total products consist of the products collected at the simulated moving bed and the extra chromatographic column respectively. This paper analyzes the effects of the selection of process point, the integral purity threshold of raffinate products and the integral purity threshold of extra products on the performance parameters of total products. The research results show that the proposed strategy can not only use raw materials with high recovery rate, but also can significantly improve the productivity of the simulated moving bed, and its separation effect is better than the conventional simulated moving bed process as well as than the partial-discard strategy.

Key words: simulated moving bed, chromatography, productivity, equilibrium theory, extra-column, partial-discard, optimal design

中图分类号: 

  • TQ 028.8

图1

线性吸附等温线描述的系统在mⅡ-mⅢ平面上的不同分离区域"

图2

在模拟移动床的循环稳态下提余产品的浓度变化(A为强吸附组分,B为弱吸附组分)"

图3

提余产品的纯度变化(蓝色实线表示积分纯度,黑点表示微分纯度)"

图4

EC-BiPD策略的操作示意图"

图5

在一个注入周期中额外色谱柱的出口浓度示意图(虚线表示每个注入周期中进料阶段和洗脱阶段的分界线;操作条件:进料中组分A和B的浓度分别为1.17和2.35 g/ml)"

表1

模拟移动床的模型参数及初始工艺参数"

模型参数数值初始工艺参数数值
柱分布结构2-2-2-2A的进料浓度0.5 g/ml
组分数2B的进料浓度0.5 g/ml
柱长53.6 cm进料液流量0.0200 ml/s
柱直径2.6 cm洗脱液流量0.0414 ml/s
空隙率0.38提取液流量0.0348 ml/s
轴向扩散系数0.0381 cm2/s提余液流量0.0266 ml/s
A的亨利系数0.54循环液流量0.0981 ml/s
B的亨利系数0.28切换时间1552 s

图6

新工艺点处的流量比(mⅡ,?mⅢ)在mⅡ-mⅢ平面上的分布(p点表示初始工艺点,蓝点表示一组提高产率的工艺点)"

表2

模拟移动床运行在新工艺点时所获得的性能参数"

RunmmPu_A/%Pu_B/%Re_A/%Re_B/%
10.28500.548997.6195.1090.5796.50
20.29000.553998.2194.0789.4297.44
30.29500.558998.6892.9388.1798.26
40.30000.563999.0791.7786.7498.89
50.30500.568999.3590.5685.2299.40
60.31000.573999.5689.1683.7299.90
???????
240.40000.663999.9067.1751.0499.90
250.40500.668999.9066.3749.1799.91
260.41000.673999.9165.6247.3199.93

图7

模拟移动床运行在新工艺点时得到的提余产品的浓度"

图8

模拟移动床运行在新工艺点时提余产品的积分纯度(蓝线)"

表3

提余产品在不同纯度阈值下进行部分丢弃后的性能参数"

Run纯度阈值/%纯度/%回收率/%
198.0098.0269.91
298.1098.1169.21
398.2098.2368.26
498.3098.3167.56
598.4098.4266.61
698.5098.5165.91
798.6098.6164.96
????
1599.4099.4153.92
1699.5099.5051.34
1799.6099.6047.37

图9

额外产品的出口浓度示意图(实线表示相邻两个注入周期的分界线;虚线表示每个注入周期中进料阶段和洗脱阶段的分界线。操作条件:以表3中Run6下丢弃的提余产品作为额外色谱柱的进料)"

图10

额外产品的积分纯度(操作条件:以表3中Run6下丢弃的提余产品作为额外色谱柱的进料)"

图11

额外产品的积分纯度阈值对总产品性能参数的影响"

1 Kim K M, Lee J W, Kim S, et al. Advanced operating strategies to extend the applications of simulated moving bed chromatography[J]. Chemical Engineering & Technology, 2017, 40(12): 2163-2178.
2 Broughton D B, Gerhold C G. Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets: US 2985589[P]. 1961-5-23.
3 Aniceto J P S, Silva C M. Simulated moving bed strategies and designs: from established systems to the latest developments[J]. Separation & Purification Reviews, 2015, 44(1): 41-73.
4 Faria R P, Rodrigues A E. Instrumental aspects of simulated moving bed chromatography[J]. Journal of Chromatography A, 2015, 1421: 82-102.
5 Lee J, Shin N C, Lim Y, et al. Modeling and simulation of a simulated moving bed for adsorptive para-xylene separation[J]. Korean Journal of Chemical Engineering, 2010, 27(2): 609-618.
6 van Duc Long N, Le T H, Kim J I, et al. Separation of D-psicose and D-fructose using simulated moving bed chromatography[J]. Journal of Separation Science, 2009, 32(11): 1987-1995.
7 Ribeiro A E, Gomes P S, Pais L S, et al. Chiral separation of ketoprofen enantiomers by preparative and simulated moving bed chromatography[J]. Separation Science and Technology, 2011, 46(11): 1726-1739.
8 Knutson H K, Holmqvist A, Andersson N, et al. Robust multi-objective optimization of chromatographic rare earth element separation[J]. Advances in Chemical Engineering and Science, 2017, 7(4): 477-493.
9 Minceva M, Rodrigues A E. Two-level optimization of an existing SMB for p-xylene separation[J]. Computers & Chemical Engineering, 2005, 29(10): 2215-2228.
10 胡蓉, 杨明磊, 钱锋. 基于多目标教学优化算法在二甲苯吸附分离过程优化中的应用[J]. 化工学报, 2015, 66(1): 326-332.
Hu R, Yang M L, Qian F. Optimization of xylene adsorption separation process based on multi-objective teaching-learning-based optimization algorithm[J]. CIESC Journal, 2015, 66(1): 326-332.
11 Matos J, Faria R P V, Nogueira I B R, et al. Optimization strategies for chiral separation by true moving bed chromatography using Particles Swarm Optimization (PSO) and new Parallel PSO variant[J]. Computers & Chemical Engineering, 2019, 123: 344-356.
12 Yu W F, Hidajat K, Ray A K. Optimization of reactive simulated moving bed and Varicol systems for hydrolysis of methyl acetate[J]. Chemical Engineering Journal, 2005, 112(1/2/3): 57-72.
13 Zhang Z Y, Mazzotti M, Morbidelli M. PowerFeed operation of simulated moving bed units: changing flow-rates during the switching interval[J]. Journal of Chromatography A, 2003, 1006(1/2): 87-99.
14 Schramm H, Kienle A, Kaspereit M, et al. Improved operation of simulated moving bed processes through cyclic modulation of feed flow and feed concentration[J]. Chemical Engineering Science, 2003, 58(23/24): 5217-5227.
15 Katsuo S, Mazzotti M. Intermittent simulated moving bed chromatography: 2. Separation of Tröger’s base enantiomers[J]. Journal of Chromatography A, 2010, 1217(18): 3067-3075.
16 Shen B, Chen M J, Jiang H L, et al. Modeling study on a three-zone simulated moving bed without zone I[J]. Separation Science and Technology, 2011, 46(5): 695-701.
17 Bae Y S, Lee C H. Partial-discard strategy for obtaining high purity products using simulated moving bed chromatography[J]. Journal of Chromatography A, 2006, 1122(1/2): 161-173.
18 Keßler L C, Seidel-Morgenstern A. Improving performance of simulated moving bed chromatography by fractionation and feed-back of outlet streams[J]. Journal of Chromatography A, 2008, 1207(1/2): 55-71.
19 Kim K M, Lee H H, Lee C H. Improved performance of a simulated moving bed process by a recycling method in the partial-discard strategy[J]. Industrial & Engineering Chemistry Research, 2012, 51(29): 9835-9849.
20 Chung J W, Kim K M, Yoon T U, et al. Power partial-discard strategy to obtain improved performance for simulated moving bed chromatography[J]. Journal of Chromatography A, 2017, 1529: 72-80.
21 Han H S, Kim K M, Han K W, et al. Total-recycling partial-discard strategy for improved performance of simulated moving-bed chromatography[J]. Journal of Industrial and Engineering Chemistry, 2019, 79: 226-235.
22 Kim K M, Han K W, Kim S I, et al. Simulated moving bed with a product column for improving the separation performance[J]. Journal of Industrial and Engineering Chemistry, 2020, 88: 328-338.
23 Mazzotti M, Storti G, Morbidelli M. Optimal operation of simulated moving bed units for nonlinear chromatographic separations[J]. Journal of Chromatography A, 1997, 769(1): 3-24.
24 Mazzotti M. Equilibrium theory based design of simulated moving bed processes for a generalized Langmuir isotherm[J]. Journal of Chromatography A, 2006, 1126(1/2): 311-322.
25 Yao H M, Tian Y C, Tadé M O. Using wavelets for solving SMB separation process models[J]. Industrial & Engineering Chemistry Research, 2008, 47(15): 5585-5593.
26 Minceva M, Rodrigues A E. Modeling and simulation of a simulated moving bed for the separation of p-xylene[J]. Industrial & Engineering Chemistry Research, 2002, 41(14): 3454-3461.
27 Klatt K U, Hanisch F, Dünnebier G. Model-based control of a simulated moving bed chromatographic process for the separation of fructose and glucose[J]. Journal of Process Control, 2002, 12(2): 203-219.
[1] 陈玉弓, 陈昊, 黄耀松. 基于分子反应动力学模拟的六甲基二硅氧烷热解机理研究[J]. 化工学报, 2022, 73(7): 2844-2857.
[2] 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173.
[3] 万景, 张霖, 樊亚超, 刘勰民, 骆培成, 张锋, 张志炳. 基于介尺度PBM模型的生物反应器放大模拟及实验研究[J]. 化工学报, 2022, 73(6): 2698-2707.
[4] 侯起旺, 文兆伦, 张忠林, 刘叶刚, 杨景轩, 陈东良, 郝晓刚, 官国清. 一种煤基多联产碳循环系统的设计及评价[J]. 化工学报, 2022, 73(5): 2073-2082.
[5] 孟文亮, 李贵贤, 周怀荣, 李婧玮, 王健, 王可, 范学英, 王东亮. 绿氢重构的粉煤气化煤制甲醇近零碳排放工艺研究[J]. 化工学报, 2022, 73(4): 1714-1723.
[6] 张淑君, 王诗慧, 张欣, 吉旭, 戴一阳, 党亚固, 周利. 集成轻烃回收单元代理模型的氢气网络多目标优化[J]. 化工学报, 2022, 73(4): 1658-1672.
[7] 张欣, 周利, 王诗慧, 吉旭, 毕可鑫. 考虑原油性质波动的炼厂氢气网络集成优化[J]. 化工学报, 2022, 73(4): 1631-1646.
[8] 石晓青, 朱炜玄, 叶昊天, 韩志忠, 董宏光. 碳五隔壁反应精馏预处理工艺模拟及多目标优化[J]. 化工学报, 2022, 73(3): 1246-1255.
[9] 王天媛, 陈春波, 孙琳, 罗雄麟. 基于全周期缓慢结垢的多效蒸发海水淡化慢时变系统优化设计[J]. 化工学报, 2022, 73(2): 759-769.
[10] 孔昕山, 黄仁星, 康丽霞, 刘永忠. 甲醇模块化生产中分时储热系统的优化设计[J]. 化工学报, 2022, 73(2): 770-781.
[11] 魏朋, 陈珺, 王志国, 刘飞. 基于平衡理论的模拟移动床工艺参数鲁棒寻优[J]. 化工学报, 2022, 73(2): 792-800.
[12] 罗紫藤, 周秋成, 王雨露, 席引尚, 周安宁, 陈福欣. 基于Py-GC/MS研究热解反应中自由基的捕获反应[J]. 化工学报, 2022, 73(2): 914-922.
[13] 郝刚卫, 刘晔, 晏刚, 鱼剑琳. 串并联风冷冰箱性能优化[J]. 化工学报, 2021, 72(S1): 178-183.
[14] 张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235.
[15] 谢晶, 舒歌平, 杨葛灵, 高山松, 王洪学, 卢晗锋, 陈银飞. Mo修饰的钼铁复合催化剂及其煤直接液化催化性能[J]. 化工学报, 2021, 72(9): 4675-4684.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!