化工学报 ›› 2022, Vol. 73 ›› Issue (2): 960-971.DOI: 10.11949/0438-1157.20211425
• 过程安全 • 上一篇
收稿日期:
2021-10-07
修回日期:
2021-10-31
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
周魁斌
作者简介:
周梦雅(1997—),女,硕士研究生,基金资助:
Mengya ZHOU(),Kuibin ZHOU(),Chao WANG,Mengyuan HUANG,Yifan WANG,Juncheng JIANG
Received:
2021-10-07
Revised:
2021-10-31
Online:
2022-02-05
Published:
2022-02-18
Contact:
Kuibin ZHOU
摘要:
通过搭建坑道限制条件下小尺寸喷射火实验装置,模拟研究埋地管道泄漏场景中引发的水平喷射火火焰特性。火焰受坑道侧壁的限制,先撞击坑道而后沿着侧壁向上发展形成垂直火焰。实验结果表明,随着泄漏质量流量的增加,火焰长度先增加后减小,而火焰宽度不断增加。同时发现,在一定条件下火焰两侧会出现涡旋对,形成一对反向旋转的火焰,为了探究其形成原因及产生条件,结合数值模拟手段进一步研究了火焰流场不稳定性。
中图分类号:
周梦雅, 周魁斌, 王朝, 黄梦源, 王一凡, 蒋军成. 坑道限制条件下水平丙烷喷射火火焰行为研究[J]. 化工学报, 2022, 73(2): 960-971.
Mengya ZHOU, Kuibin ZHOU, Chao WANG, Mengyuan HUANG, Yifan WANG, Juncheng JIANG. Flame behavior of horizontal propane jet fire in a pit[J]. CIESC Journal, 2022, 73(2): 960-971.
d/mm | mc/(g/s) | V/(m/s) | U/d |
---|---|---|---|
2.0 | 0.03~0.37 | 5~63 | 29.00 |
2.3 | 0.03~0.37 | 3~48 | 25.22 |
3.2 | 0.03~0.37 | 2~25 | 18.125 |
表1 实验工况
Table 1 Experimental test conditions
d/mm | mc/(g/s) | V/(m/s) | U/d |
---|---|---|---|
2.0 | 0.03~0.37 | 5~63 | 29.00 |
2.3 | 0.03~0.37 | 3~48 | 25.22 |
3.2 | 0.03~0.37 | 2~25 | 18.125 |
Case | 网格总数 | 网格平均质量 | 最大扭曲度 |
---|---|---|---|
1 | 152451 | 0.83462 | 0.83 |
2 | 325001 | 0.83480 | 0.82 |
3 | 435349 | 0.83513 | 0.82 |
表2 三组网格系统的计算网格数量
Table 2 Number of computational grids for three different grid systems
Case | 网格总数 | 网格平均质量 | 最大扭曲度 |
---|---|---|---|
1 | 152451 | 0.83462 | 0.83 |
2 | 325001 | 0.83480 | 0.82 |
3 | 435349 | 0.83513 | 0.82 |
工况 | V/(m/s) | mc/(g/s) | Re |
---|---|---|---|
1 | 8 | 0.12 | 2.2×103 |
2 | 12 | 0.18 | 4.9×103 |
3 | 16 | 0.24 | 8.7×103 |
4 | 18 | 027 | 1.1×104 |
5 | 20 | 0.31 | 1.4×104 |
表3 模拟初始工况条件
Table 3 Initial conditions of simulation
工况 | V/(m/s) | mc/(g/s) | Re |
---|---|---|---|
1 | 8 | 0.12 | 2.2×103 |
2 | 12 | 0.18 | 4.9×103 |
3 | 16 | 0.24 | 8.7×103 |
4 | 18 | 027 | 1.1×104 |
5 | 20 | 0.31 | 1.4×104 |
d/mm | 层流阶段-过渡阶段 | 过渡阶段-完全湍流阶段 | ||||
---|---|---|---|---|---|---|
mc/(g/s) | V/(m/s) | Re | mc/(g/s) | V/(m/s) | Re | |
2.0 | 0.12 | 19.57 | 8544 | 0.20 | 34.36 | 14758 |
2.3 | 0.12 | 16.05 | 8443 | 0.20 | 25.98 | 14184 |
3.2 | 0.16 | 12.22 | 8389 | 0.28 | 21.38 | 14499 |
表4 流动状态的临界雷诺数
Table 4 Critical Reynolds number of flow state
d/mm | 层流阶段-过渡阶段 | 过渡阶段-完全湍流阶段 | ||||
---|---|---|---|---|---|---|
mc/(g/s) | V/(m/s) | Re | mc/(g/s) | V/(m/s) | Re | |
2.0 | 0.12 | 19.57 | 8544 | 0.20 | 34.36 | 14758 |
2.3 | 0.12 | 16.05 | 8443 | 0.20 | 25.98 | 14184 |
3.2 | 0.16 | 12.22 | 8389 | 0.28 | 21.38 | 14499 |
8 | Huang Y B, Li Y F, Dong B Y, et al. Computational investigation of flame extension height for horizontally oriented rectangular source jet fires impinging on a vertical plate[J]. Fire and Materials, 2019, 43(7): 821-830. |
9 | Wang Z H, Zhou K B, Zhang L, et al. Flame extension area and temperature profile of horizontal jet fire impinging on a vertical plate[J]. Process Safety and Environmental Protection, 2021, 147: 547-558. |
10 | Shi X, Bellino P W, Simeoni A, et al. Experimental study of burning behavior of large-scale crude oil fires in ice cavities[J]. Fire Safety Journal, 2016, 79: 91-99. |
11 | Shi X C, Ranellone R T, Sezer H, et al. Influence of ullage to cavity size ratio on in situ burning of oil spills in ice-infested water[J]. Cold Regions Science and Technology, 2017, 140: 5-13. |
12 | Shi X C, Sahu A K, Nair S, et al. Effect of ullage on burning behavior of small-scale pool fires in a cavity[J]. Proceedings of the Combustion Institute, 2017, 36(2): 3113-3120. |
13 | Liu C X, Ding L, Jangi M, et al. Experimental study of the effect of ullage height on flame characteristics of pool fires[J]. Combustion and Flame, 2020, 216: 245-255. |
14 | Artemenko E S, Blinov V I. Burning of liquids in vessels with change of level[J]. Combustion, Explosion and Shock Waves, 1968, 4(1): 39-42. |
15 | Dlugogorski B Z, Wilson M. Effect of ullage on properties of small-scale pool fires[J]. Developments in Chemical Engineering and Mineral Processing, 2008, 8(1/2): 149-166. |
16 | Chen R Y, Li Q W, Xu X K, et al. Comparative pyrolysis characteristics of representative commercial thermosetting plastic waste in inert and oxygenous atmosphere[J]. Fuel, 2019, 246: 212-221. |
17 | Gullett B K, Lemieux P M, Lutes C C, et al. Emissions of PCDD/F from uncontrolled, domestic waste burning[J]. Chemosphere, 2001, 43(4/5/6/7): 721-725. |
18 | Gullett B K, Linak W P, Touati A, et al. Characterization of air emissions and residual ash from open burning of electronic wastes during simulated rudimentary recycling operations[J]. Journal of Material Cycles and Waste Management, 2007, 9(1): 69-79. |
19 | Kimmerly V M, Rangwala A S. Laboratory-scale investigation of air entrainment in burn pits used for waste disposal[J]. Fuel, 2020, 276: 117941. |
20 | Armaly B F, Durst F, Pereira J C F, et al. Experimental and theoretical investigation of backward-facing step flow[J]. Journal of Fluid Mechanics, 1983, 127: 473. |
1 | Gómez-Mares M, Zárate L, Casal J. Jet fires and the domino effect[J]. Fire Safety Journal, 2008, 43(8): 583-588. |
2 | Delichatsios M A. Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships[J]. Combustion and Flame, 1993, 92(4): 349-364. |
21 | Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. |
22 | Huang Y Q, Wang W Y, Lu K, et al. Flow-field evolution and vortex structure characteristics of a high-temperature buoyant jet[J]. Building and Environment, 2021, 187: 107407. |
3 | Gómez-Mares M, Muñoz M, Casal J. Axial temperature distribution in vertical jet fires[J]. Journal of Hazardous Materials, 2009, 172(1): 54-60. |
4 | Zhang B, Liu Y, Laboureur D, et al. Experimental study on propane jet fire hazards: thermal radiation[J]. Industrial & Engineering Chemistry Research, 2015, 54(37): 9251-9256. |
5 | 马子超, 吕淑然, 王春雪, 等. 高压天然气管道泄漏孔位置对喷射火的影响[J]. 消防科学与技术, 2017, 36(1): 13-15. |
Ma Z C, Lv S R, Wang C X, et al. Influence of leak hole position on jet fire of high pressure gas pipeline[J]. Fire Science and Technology, 2017, 36(1): 13-15. | |
6 | Schefer R W, Merilo E G, Groethe M A, et al. Experimental investigation of hydrogen jet fire mitigation by barrier walls[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2530-2537. |
7 | 董炳燕, 黄有波, 孟江, 等. 障碍物对天然气喷射火影响的数值模拟研究[J]. 中国安全生产科学技术, 2016, 12(1): 111-116. |
Dong B Y, Huang Y B, Meng J, et al. Numerical simulation on influence of obstacle on jet fire of natural gas[J]. Journal of Safety Science and Technology, 2016, 12(1): 111-116. | |
23 | Howell J R, Menguc M P, Siegel R. Thermal radiation heat transfer[M]. Boca Raton: CRC Press, 2015: 1016. |
24 | Palacios A, Casal J. Assessment of the shape of vertical jet fires[J]. Fuel, 2011, 90(2): 824-833. |
25 | Hottel H C, Hawthorne W R. Diffusion in laminar flame jets[J]. Symposium on Combustion and Flame, and Explosion Phenomena, 1948, 3(1): 254-266. |
26 | Suris A L, Flankin E V, Shorin S N. Length of free diffusion flames[J]. Combustion, Explosion and Shock Waves, 1977, 13(4): 459-462. |
27 | Gopalaswami N, Liu Y, Laboureur D M, et al. Experimental study on propane jet fire hazards: comparison of main geometrical features with empirical models[J]. Journal of Loss Prevention in the Process Industries, 2016, 41: 365-375. |
28 | Sugawa O, Sakai K. Flame length and width produced by ejected propane gas fuel from a pipe[J]. Fire Science and Technology, 1997, 17(1): 55-63. |
29 | Yule A J, Chigier N A, Ralph S, et al. Combustion-transition interaction in a jet flame[J]. AIAA Journal, 1981, 19(6): 752-760. |
30 | Davis R W, Moore E F, Roquemore W M, et al. Preliminary results of a numerical-experimental study of the dynamic structure of a buoyant jet diffusion flame[J]. Combustion and Flame, 1991, 83(3/4): 263-270. |
31 | Albers B W, Agrawal A K. Schlieren analysis of an oscillating gas-jet diffusion flame[J]. Combustion and Flame, 1999, 119(1/2): 84-94. |
32 | Kimura I. Stability of laminar-jet flames[J]. Symposium (International) on Combustion, 1965, 10(1): 1295-1300. |
33 | Asendrych D, Drobniak S. Buoyancy-driven coherent structures in free round flame[J]. Flow, Turbulence and Combustion, 2001, 67(4): 325-353. |
[1] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[2] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
[3] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[4] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
[5] | 肖忠良, 尹碧露, 宋刘斌, 匡尹杰, 赵亭亭, 刘成, 袁荣耀. 废旧锂离子电池回收工艺研究进展及其安全风险分析[J]. 化工学报, 2023, 74(4): 1446-1456. |
[6] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[7] | 武子超, 汪志雷, 李荣业, 李可昕, 华敏, 潘旭海, 王三明, 蒋军成. 点火方式对欠膨胀氢气射流爆炸超压影响规律研究[J]. 化工学报, 2023, 74(3): 1409-1418. |
[8] | 杜江龙, 杨雯棋, 黄凯, 练成, 刘洪来. 复合相变材料/空冷复合式锂离子电池模块散热性能[J]. 化工学报, 2023, 74(2): 674-689. |
[9] | 杨克, 王辰升, 纪虹, 郑凯, 邢志祥, 毕海普, 蒋军成. 聚多巴胺包覆混合粉体抑制甲烷爆炸的实验研究[J]. 化工学报, 2022, 73(9): 4245-4254. |
[10] | 廖珊珊, 张少刚, 陶骏骏, 刘家豪, 汪金辉. 竖直射流火撞击障碍管道数值模拟分析[J]. 化工学报, 2022, 73(9): 4226-4234. |
[11] | 王燕, 何佳, 杨晶晶, 林晨迪, 纪文涛. 草酸盐和碳酸氢盐抑制聚乙烯粉尘爆炸特性[J]. 化工学报, 2022, 73(9): 4207-4216. |
[12] | 张经纬, 周弋惟, 陈卓, 徐建鸿. 微反应器内的有机合成前沿进展[J]. 化工学报, 2022, 73(8): 3472-3482. |
[13] | 宋健斐, 孙立强, 解明, 魏耀东. 旋风分离器内气相旋转流不稳定性的实验研究[J]. 化工学报, 2022, 73(7): 2858-2864. |
[14] | 张凤丽, 潘辉, 王金江. 基于多元状态估计的热交换器多参数关联预警方法[J]. 化工学报, 2022, 73(2): 814-826. |
[15] | 刘伯峥, 王静波, 曾涛, 殷雅侠, 郭玉国. 磷酸铁锂电池寿命初期与末期安全性差异[J]. 化工学报, 2022, 73(12): 5555-5563. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||