化工学报 ›› 2022, Vol. 73 ›› Issue (3): 1136-1146.DOI: 10.11949/0438-1157.20211327
张苗(),杨洪海(),尹勇,徐悦,沈俊杰,卢心诚,施伟刚,王军
收稿日期:
2021-09-10
修回日期:
2021-12-20
出版日期:
2022-03-15
发布日期:
2022-03-14
通讯作者:
杨洪海
作者简介:
张苗(1997—),男,硕士研究生, Miao ZHANG(),Honghai YANG(),Yong YIN,Yue XU,Junjie SHEN,Xincheng LU,Weigang SHI,Jun WANG
Received:
2021-09-10
Revised:
2021-12-20
Online:
2022-03-15
Published:
2022-03-14
Contact:
Honghai YANG
摘要:
氧化石墨烯(graphene oxide,GO)是一种新型二维平面结构碳纳米材料,具有高导热性和强亲水性。通过实验研究GO纳米流体对脉动热管(PHP)启动及传热的影响。PHP是由3个弯头构成的闭式回路,采用垂直底部加热,功率范围10~105 W;冷凝段强制风冷。去离子水为基液,GO浓度范围0.02%~0.11%(质量分数);固定充液率约50%。结果表明:适当添加GO纳米颗粒可有效改善启动性能。当浓度为0.05%、0.08%时,启动温度可分别降低28.6℃(33.9%)、26.2℃(31.1%),启动时间分别缩短320 s(19.5%)、304 s(18.5%),启动过程更加平稳。GO纳米流体对PHP的传热强化作用与浓度及功率有关。当浓度在0.02%~0.08%范围、加热功率在20~105 W范围时,传热强化率在18.6%~57.1%之间,强化作用明显。在上述浓度范围(0.02%~0.08%)内,随着加热功率增加,热性能改善程度先增加,而后逐渐减少;加热功率为30 W时,热性能改善程度可达到46.1%~57.1%。最后,在实验基础上,综合应用Ku、Bo、Mo、Pr、Ja* 等无量纲数组合,拟合得到实验关联式预测GO/水PHP传热性能。
中图分类号:
张苗, 杨洪海, 尹勇, 徐悦, 沈俊杰, 卢心诚, 施伟刚, 王军. 氧化石墨烯/水脉动热管的启动及传热特性[J]. 化工学报, 2022, 73(3): 1136-1146.
Miao ZHANG, Honghai YANG, Yong YIN, Yue XU, Junjie SHEN, Xincheng LU, Weigang SHI, Jun WANG. Start-up and heat transfer characteristics of a pulsating heat pipe with graphene oxide nanofluids[J]. CIESC Journal, 2022, 73(3): 1136-1146.
研究者 | 工质与浓度/%(质量) | 充液率/% | 加热功率/W | Le/La/Lc /mm | 弯头数 |
---|---|---|---|---|---|
Cui等[ | GNP/水:0.01/0.025/0.05/0.075/0.08/0.1 | 45~90 | 10~100 ① | 80/20/95 | 5 |
Xu等[ | GNP/乙醇水溶液:0.01/0.03/0.05/0.075/0.1 | 50 | 20~60 ② | 100/90/100 | 3 |
Li等[ | GNP/乙二醇水溶液:0.01/0.1/0.2 | 10 ~ 65 | 10~100 ② | 60/40/80 | 5 |
Su等[ | GO/水:0.05/0.1,GO/正丁醇溶液:0.014 | 50 | 10~100 ② | 50/200/50 | 3 |
Nazari等[ | GO/水: 0.025/0.05/0.1/0.15 | 50 | 10~70 ② | 75/95/208 | 2 |
本研究 | GO/水: 0.02/0.05/0.08/0.11 | 50 | 10~105 ① | 75/20/100 | 3 |
表1 GNP及GO纳米流体在PHP中的应用研究
Table 1 Researches of GNP and GO nanofluids in the PHP
研究者 | 工质与浓度/%(质量) | 充液率/% | 加热功率/W | Le/La/Lc /mm | 弯头数 |
---|---|---|---|---|---|
Cui等[ | GNP/水:0.01/0.025/0.05/0.075/0.08/0.1 | 45~90 | 10~100 ① | 80/20/95 | 5 |
Xu等[ | GNP/乙醇水溶液:0.01/0.03/0.05/0.075/0.1 | 50 | 20~60 ② | 100/90/100 | 3 |
Li等[ | GNP/乙二醇水溶液:0.01/0.1/0.2 | 10 ~ 65 | 10~100 ② | 60/40/80 | 5 |
Su等[ | GO/水:0.05/0.1,GO/正丁醇溶液:0.014 | 50 | 10~100 ② | 50/200/50 | 3 |
Nazari等[ | GO/水: 0.025/0.05/0.1/0.15 | 50 | 10~70 ② | 75/95/208 | 2 |
本研究 | GO/水: 0.02/0.05/0.08/0.11 | 50 | 10~105 ① | 75/20/100 | 3 |
参数 | 不确定度(±) |
---|---|
Te | 0.24% |
Tc | 0.52% |
Q | |
R | |
q | 3.01% |
表2 主要实验参数的不确定度
Table 2 Maximum uncertainties of the main experimental parameters
参数 | 不确定度(±) |
---|---|
Te | 0.24% |
Tc | 0.52% |
Q | |
R | |
q | 3.01% |
20 | Li Z X, Sarafraz M M, Mazinani A, et al. Operation analysis, response and performance evaluation of a pulsating heat pipe for low temperature heat recovery[J]. Energy Conversion and Management, 2020, 222: 113230. |
21 | Su X J, Zhang M, Han W, et al. Enhancement of heat transport in oscillating heat pipe with ternary fluid[J]. International Journal of Heat and Mass Transfer, 2015, 87: 258-264. |
22 | 张明, 苏新军, 韩魏, 等. 氧化石墨烯/自湿润流体脉动热管的传热特性[J]. 化工进展, 2015, 34(8): 2951-2954. |
Zhang M, Su X J, Han W, et al. Heat transfer characteristics of pulsating heat pipe with graphene oxide/self-rewetting fluid[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 2951-2954. | |
23 | Nazari M A, Ghasempour R, Ahmadi M H, et al. Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe[J]. International Communications in Heat and Mass Transfer, 2018, 91: 90-94. |
24 | Akbari A, Saidi M H. Experimental investigation of nanofluid stability on thermal performance and flow regimes in pulsating heat pipe[J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(3): 1835-1847. |
25 | 张飞龙, 王莉, 俞树荣, 等. 氧化石墨烯及其导热纳米流体的制备与性能[J]. 功能材料, 2015, 46(16): 16138-16141. |
Zhang F L, Wang L, Yu S R, et al. Preparation and properties of graphene oxide and their thermal conductivity nanofluids[J]. Journal of Functional Materials, 2015, 46(16): 16138-16141. | |
26 | 张佳利. 化学还原氧化石墨烯及其衍生物的制备、性质和应用研究[D]. 上海: 上海交通大学, 2011. |
Zhang J L. Preparations, properties and applications of chemically reduced graphene oxide and its derivatives[D]. Shanghai: Shanghai Jiaotong University, 2011. | |
27 | Kim K M, Bang I C. Effects of graphene oxide nanofluids on heat pipe performance and capillary limits[J]. International Journal of Thermal Sciences, 2016, 100: 346-356. |
28 | Cacua K, Buitrago-Sierra R, Pabón E, et al. Nanofluids stability effect on a thermosyphon thermal performance[J]. International Journal of Thermal Sciences, 2020, 153: 106347. |
1 | Bastakoti D, Zhang H N, Li D, et al. An overview on the developing trend of pulsating heat pipe and its performance[J]. Applied Thermal Engineering, 2018, 141: 305-332. |
2 | Tang X, Sha L L, Zhang H, et al. A review of recent experimental investigations and theoretical analyses for pulsating heat pipes[J]. Frontiers in Energy, 2013, 7(2): 161-173. |
29 | Khandekar S, Charoensawan P, Groll M, et al. Closed loop pulsating heat pipes: Part B: Visualization and semi-empirical modeling[J]. Applied Thermal Engineering, 2003, 23(16): 2021-2033. |
30 | Shafii M B, Arabnejad S, Saboohi Y, et al. Experimental investigation of pulsating heat pipes and a proposed correlation[J]. Heat Transfer Engineering, 2010, 31(10): 854-861. |
31 | Liu X D, Chen Y P, Shi M H. Dynamic performance analysis on start-up of closed-loop pulsating heat pipes (CLPHPs)[J]. International Journal of Thermal Sciences, 2013, 65: 224-233. |
32 | Patel V M, Gaurav, Mehta H B. Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe[J]. Applied Thermal Engineering, 2017, 110: 1568-1577. |
33 | Xing M B, Yu J L, Wang R X. Performance of a vertical closed pulsating heat pipe with hydroxylated MWNTs nanofluid[J]. International Journal of Heat and Mass Transfer, 2017, 112: 81-88. |
34 | 尹大燕, 贾力. 振荡热管管内流型对传热性能的影响[J]. 应用基础与工程科学学报, 2007, 15(3): 363-368. |
Yin D Y, Jia L. The influence of flow patterns on heat transfer characteristic of oscillating heat pipe[J]. Journal of Basic Science and Engineering, 2007, 15(3): 363-368. | |
35 | 王宇, 李惟毅. 充液率对单环路脉动热管启动运行的影响[J]. 中国电机工程学报, 2011, 31(17): 79-85. |
Wang Y, Li W Y. Influence of filling ratio on startup and operation of a single loop pulsating heat pipe[J]. Proceedings of the CSEE, 2011, 31(17): 79-85. | |
36 | Yang H H, Khandekar S, Groll M. Performance characteristics of pulsating heat pipes as integral thermal spreaders[J]. International Journal of Thermal Sciences, 2009, 48(4): 815-824. |
37 | Qu J, Wu H Y, Cheng P. Start-up, heat transfer and flow characteristics of silicon-based micro pulsating heat pipes[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 6109-6120. |
38 | Mameli M, Marengo M, Khandekar S. Local heat transfer measurement and thermo-fluid characterization of a pulsating heat pipe[J]. International Journal of Thermal Sciences, 2014, 75: 140-152. |
39 | Yuan D Z, Qu W, Ma T Z. Flow and heat transfer of liquid plug and neighboring vapor slugs in a pulsating heat pipe[J]. International Journal of Heat and Mass Transfer, 2010, 53(7/8): 1260-1268. |
40 | Jo J, Kim J, Kim S J. Experimental investigations of heat transfer mechanisms of a pulsating heat pipe[J]. Energy Conversion and Management, 2019, 181: 331-341. |
41 | Wu Q P, Xu R J, Wang R X, et al. Effect of C60 nanofluid on the thermal performance of a flat-plate pulsating heat pipe[J]. International Journal of Heat and Mass Transfer, 2016, 100: 892-898. |
42 | Khandekar S, Dollinger N, Groll M. Understanding operational regimes of closed loop pulsating heat pipes: an experimental study[J]. Applied Thermal Engineering, 2003, 23(6): 707-719. |
43 | Rittidech S, Pipatpaiboon N, Terdtoon P. Heat-transfer characteristics of a closed-loop oscillating heat-pipe with check valves[J]. Applied Energy, 2007, 84(5): 565-577. |
44 | Lin Z R, Wang S F, Chen J J, et al. Experimental study on effective range of miniature oscillating heat pipes[J]. Applied Thermal Engineering, 2011, 31(5): 880-886. |
45 | Qu J, Wang Q. Experimental study on the thermal performance of vertical closed-loop oscillating heat pipes and correlation modeling[J]. Applied Energy, 2013, 112: 1154-1160. |
46 | Liang Q Q, Hao T T, Wang K, et al. Startup and transport characteristics of oscillating heat pipe using ionic liquids[J]. International Communications in Heat and Mass Transfer, 2018, 94: 1-13. |
47 | Ebrahimi Dehshali M, Nazari M A, Shafii M B. Thermal performance of rotating closed-loop pulsating heat pipes: experimental investigation and semi-empirical correlation[J]. International Journal of Thermal Sciences, 2018, 123: 14-26. |
48 | Goshayeshi H R, Goodarzi M, Safaei M R, et al. Experimental study on the effect of inclination angle on heat transfer enhancement of a ferrofluid in a closed loop oscillating heat pipe under magnetic field[J]. Experimental Thermal and Fluid Science, 2016, 74: 265-270. |
49 | Goshayeshi H R, Safaei M R, Goodarzi M, et al. Particle size and type effects on heat transfer enhancement of Ferro-nanofluids in a pulsating heat pipe[J]. Powder Technology, 2016, 301: 1218-1226. |
50 | Katpradit T, Wongratanaphisan T, Terdtoon P, et al. Correlation to predict heat transfer characteristics of a closed end oscillating heat pipe at critical state[J]. Applied Thermal Engineering, 2005, 25(14/15): 2138-2151. |
51 | Rittidech S, Terdtoon P, Murakami M, et al. Correlation to predict heat transfer characteristics of a closed-end oscillating heat pipe at normal operating condition[J]. Applied Thermal Engineering, 2003, 23(4): 497-510. |
52 | Sakulchangsatjatai P, Terdtoon P, Wongratanaphisan T, et al. Operation modeling of closed-end and closed-loop oscillating heat pipes at normal operating condition[J]. Applied Thermal Engineering, 2004, 24(7): 995-1008. |
53 | Kammuang-Lue N, Sakulchangsatjatai P, Terdtoon P, et al. Correlation to predict the maximum heat flux of a vertical closed-loop pulsating heat pipe[J]. Heat Transfer Engineering, 2009, 30(12): 961-972. |
54 | Kholi F K, Mucci A, Kallath H, et al. An improved correlation to predict the heat transfer in pulsating heat pipes over increased range of fluid-filling ratios and operating inclinations[J]. Journal of Mechanical Science and Technology, 2020, 34(6): 2637-2646. |
55 | Charoensawan P, Khandekar S, Groll M, et al. Closed loop pulsating heat pipes: Part A: Parametric experimental investigations[J]. Applied Thermal Engineering, 2003, 23(16): 2009-2020. |
56 | Pak B C, Cho Y I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Experimental Heat Transfer, 1998, 11(2): 151-170. |
57 | Said Z, Abdelkareem M A, Rezk H, et al. Stability, thermophysical and electrical properties of synthesized carbon nanofiber and reduced-graphene oxide-based nanofluids and their hybrid along with fuzzy modeling approach[J]. Powder Technology, 2020, 364: 795-809. |
58 | 刘利伟. 氧化石墨烯脉动热管传热特性及实验关联式的研究[D]. 上海: 东华大学, 2020. |
Liu L L. Study on heat transfer characteristics and experimental correlation of graphene oxide pulsating heat pipe[D]. Shanghai: Donghua University, 2020. | |
59 | 郑兆志, 何钦波, 刘玉东. 水基氧化石墨烯纳米流体表面张力实验研究[J]. 热科学与技术, 2015, 14(3): 203-207. |
Zheng Z Z, He Q B, Liu Y D. Experimental investigation on surface tension of water-based graphene oxide nanofluids[J]. Journal of Thermal Science and Technology, 2015, 14(3): 203-207. | |
60 | Ijam A, Saidur R, Ganesan P, et al. Stability, thermo-physical properties, and electrical conductivity of graphene oxide-deionized water/ethylene glycol based nanofluid[J]. International Journal of Heat and Mass Transfer, 2015, 87: 92-103. |
3 | Han X H, Wang X H, Zheng H C, et al. Review of the development of pulsating heat pipe for heat dissipation[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 692-709. |
4 | Xu Y Y, Xue Y Q, Qi H, et al. An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes[J]. Renewable and Sustainable Energy Reviews, 2021, 144: 110995. |
5 | Alhuyi Nazari M, Ahmadi M H, Ghasempour R, et al. A review on pulsating heat pipes: from solar to cryogenic applications[J]. Applied Energy, 2018, 222: 475-484. |
6 | Xu J L, Zhang X M. Start-up and steady thermal oscillation of a pulsating heat pipe[J]. Heat and Mass Transfer, 2005, 41(8): 685-694. |
7 | Xue Z H, Qu W, Xie M H. Full visualization and startup performance of an ammonia pulsating heat pipe[J]. Propulsion and Power Research, 2013, 2(4): 263-268. |
8 | Kim J, Kim S J. Experimental investigation on working fluid selection in a micro pulsating heat pipe[J]. Energy Conversion and Management, 2020, 205: 112462. |
9 | Alhuyi Nazari M, Ahmadi M H, Ghasempour R, et al. How to improve the thermal performance of pulsating heat pipes: a review on working fluid[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 630-638. |
10 | Riehl R R, Santos N D. Water-copper nanofluid application in an open loop pulsating heat pipe[J]. Applied Thermal Engineering, 2012, 42: 6-10. |
11 | Li Q M, Zou J, Yang Z, et al. Visualization of two-phase flows in nanofluid oscillating heat pipes[J]. Journal of Heat Transfer, 2011, 133(5): 052901. |
12 | Qu J, Wu H Y. Thermal performance comparison of oscillating heat pipes with SiO2/water and Al2O3/water nanofluids[J]. International Journal of Thermal Sciences, 2011, 50(10): 1954-1962. |
13 | Jia H W, Jia L, Tan Z T. An experimental investigation on heat transfer performance of nanofluid pulsating heat pipe[J]. Journal of Thermal Science, 2013, 22(5): 484-490. |
14 | Mehrali M, Sadeghinezhad E, Latibari S T, et al. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets[J]. Nanoscale Research Letters, 2014, 9(1): 15. |
15 | Lee G J, Rhee C K. Enhanced thermal conductivity of nanofluids containing graphene nanoplatelets prepared by ultrasound irradiation[J]. Journal of Materials Science, 2014, 49(4): 1506-1511. |
16 | Sarsam W S, Amiri A, Kazi S N, et al. Stability and thermophysical properties of non-covalently functionalized graphene nanoplatelets nanofluids[J]. Energy Conversion and Management, 2016, 116: 101-111. |
17 | 施赛燕, 崔晓钰, 周宇, 等. 石墨烯/去离子水纳米流体振荡热管传热性能[J]. 化工学报, 2016, 67(12): 4944-4950. |
Shi S Y, Cui X Y, Zhou Y, et al. Heat transfer performance of pulsating heat pipe with graphene aqueous nanofluids[J]. CIESC Journal, 2016, 67(12): 4944-4950. | |
18 | Zhou Y, Cui X Y, Weng J H, et al. Experimental investigation of the heat transfer performance of an oscillating heat pipe with graphene nanofluids[J]. Powder Technology, 2018, 332: 371-380. |
19 | Xu Y Y, Xue Y Q, Qi H, et al. Experimental study on heat transfer performance of pulsating heat pipes with hybrid working fluids[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119727. |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[5] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[8] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[9] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[10] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[11] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[12] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[13] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[14] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[15] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||