化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 153-160.doi: 10.11949/0438-1157.20201609

• 流体力学与传递现象 • 上一篇    下一篇

低温输运管道预冷过程的气液两相数值分析

林恩承1(),王文1(),匡以武1,石玉美1,耑锐2,孙礼杰2   

  1. 1.上海交通大学机械与动力工程学院,上海 200240
    2.上海宇航系统工程研究所,上海 201108
  • 收稿日期:2020-11-04 修回日期:2021-01-22 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 王文 E-mail:linencheng@sjtu.edu.cn;wenwang@sjtu.edu.cn
  • 作者简介:林恩承(1995—),男,硕士研究生,linencheng@sjtu.edu.cn
  • 基金资助:
    国家自然科学青年基金项目(51906148);上海航天先进技术联合研究基金项目

Numerical analysis of cryogenic two-phase precooling flow in a mini pipe

LIN Encheng1(),WANG Wen1(),KUANG Yiwu1,SHI Yumei1,ZHUAN Rui2,SUN Lijie2   

  1. 1.School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2.Institute of Aerospace Systems Engineering, Shanghai 201108, China
  • Received:2020-11-04 Revised:2021-01-22 Published:2021-06-20 Online:2021-06-20
  • Contact: WANG Wen E-mail:linencheng@sjtu.edu.cn;wenwang@sjtu.edu.cn

摘要:

低温流体在输运管道中预冷时会出现复杂的气液两相流现象。本研究的数值仿真主要针对液氮在管道内沸腾过程中的传热特性、气泡的生成规律、临界热通量等进行分析。通过改变管道直径、入口液氮流量,讨论了不同时刻计算域内部的温度、热通量以及两相分布规律,最终得到研究范围内的临界热通量(CHF)特性。研究发现,流体温度突变时间随着管径的减小而提前,随着流量的增大而后延;壁面温度变化幅度随着管径的增大而增大;CHF值随着管径的减小而增加,随着入口流量的增加而减小。

关键词: 预冷, 沸腾, 汽化, 计算流体力学, 气液两相流

Abstract:

There are many applications about cryogenic multiphase flow in various industry situations. In this paper, the precooling flow of liquid nitrogen in a mini pipe was discussed with numerical simulation, some characteristics were displayed such as, bubbles formation, critical heat flux, and temperature profiles, etc. The employed mathematical and physical methods were verified with some experimental data in the previous literature. According to simulation results about precooling processes, the temperature drop of internal fluid happened early with the pipe diameter decreasing, and the temperature drop happened lately with the liquid nitrogen mass flow increasing. The amplitude of the wall temperature drop decreased with the pipe diameter decreasing. In the range of calculation conditions, the higher CHF values occurred with less inner diameter tubes and higher mass flow rate.

Key words: precooling, boiling, vaporization, CFD, gas-liquid flow

中图分类号: 

  • TK 124

图1

管道几何模型"

表1

计算工况"

工况质量流量/ (g/s)管内径/ mm
11.612.7
21.611.7
31.610.7
43.212.7
54.812.7

图2

网格无关性曲线"

图3

网格尺度分布模型"

图4

监测点位置[9]"

表2

数值计算温度与文献[9]试验数据对比"

时间/ s监测点入口温度/ K监测点流体温度/ K监测点壁面温度/ K质量流量/ (g/s)过渡区时长/ s
077 /77290 /290295 /2951.6121 /149
10077 /77273 /285278 /289
20077 /77200 /224226 /242
30077 /7780 /86145 /168
40077 /7780 /8386 /113
50077 /7780 /8285 /96
最大误差0.120.310.23

表3

压降的计算结果与文献[9]试验数据对比"

时间/ s入口压力/ kPa
0200 /200
40186 /190
80173 /177
120160 /165
最大误差0.03

图5

瞬态试验数据-数值分析数据对比"

图6

不同时刻的流型"

图7

预冷中气膜的演化过程"

图8

不同时刻的壁温"

图9

不同工况入口5.5 m处瞬态温度变化"

图10

不同工况瞬态压降变化"

图11

CHF值达到空泡份额82%的气相体积比云图"

图12

不同截面处氮气体积分布云图"

图13

不同直径及不同质量流量时管道内部及壁面的沿程热通量变化"

表4

不同工况下的CHF值"

工况热通量/(kW/m2)
132.5
235.7
338.9
430.2
528.3
1 Kataoka I, Kodama S, Tomiyama A, et al. Study on analytical prediction of forced convective CHF based on multi-fluid model [J]. Nuclear Engineering and Design, 1997, 175(1/2): 107-117.
2 Ha S J, No H C. A dry-spot model of critical heat flux applicable to both pool boiling and subcooled forced convection boiling [J]. International Journal of Heat and Mass Transfer, 2000, 43(2): 241-250.
3 Kodama S, Kataoka I. Critical heat flux prediction method based on two-phase turbulence model [J]. Journal of Nuclear Science and Technology, 2003, 40(10): 725-733.
4 Weisman J, Ileslamlou S. A phenomenological model for prediction of critical heat flux under highly subcooled conditions [J]. Fusion Technology, 1988, 13(4): 654-659.
5 Kocamustafaogullari G, Ishii M. Interfacial area and nucleation site density in boiling systems [J]. International Journal of Heat and Mass Transfer, 1983, 26(9): 1377-1387.
6 Darr S R, Hartwig J W. Two-phase convection heat transfer correlations for liquid hydrogen pipe chilldown [J]. Cryogenics, 2020, 105: 102999.
7 Darr S R, Hu H, Shaeffer R, et al. Numerical simulation of the liquid nitrogen chilldown of a vertical tube [C]// 53rd AIAA Aerospace Sciences Meeting. Reston, Virginia: AIAA, 2015.
8 Hahne E, Barthau G. Heat transfer and nucleation in pool-boiling [J]. International Journal of Thermal Sciences, 2006, 45(3): 209-216.
9 Jin L X, Park C, Cho H, et al. Experimental investigation on chill-down process of cryogenic flow line [J]. Cryogenics, 2016, 79: 96-105.
10 Liu X F, Chen X Y, Zhang Q Y, et al. Investigation on CHF of saturated liquid nitrogen flow boiling in a horizontal small channel [J]. Applied Thermal Engineering, 2017, 125: 1025-1036.
11 张翔, 彭敏俊, 丛腾龙, 等. 基于确定性抽样的过冷沸腾边界条件不确定性分析 [J]. 原子能科学技术, 2020, 54(11): 2054-2062.
Zhang X, Peng M J, Cong T L, et al. Uncertainty analysis on boundary condition in subcooled boiling flow by deterministic sampling [J]. Atomic Energy Science and Technology, 2020, 54(11): 2054-2062.
12 董晓朦, 张志俭, 刘东, 等. 棒束通道定位格架沸腾临界特性数值研究 [J]. 核动力工程, 2018, 39(6): 5-10.
Dong X M, Zhang Z J, Liu D, et al. Numerical study on boiling critical characteristics of rod beam channel positioning lattice [J]. Nuclear Power Engineering, 2018, 39(6): 5-10.
13 Zhang B C, Li Q L, Wang Y, et al. Experimental investigation of nitrogen flow boiling heat transfer in a single mini-channel [J]. Journal of Zhejiang University-SCIENCE A, 2020, 21(2): 147-166.
14 郑乐乐, 熊进标, 卢川. 基于CMFD模拟的圆管内DNB型CHF预测 [J]. 核科学与工程, 2018, 38(6): 935-943.
Zheng L L, Xiong J B, Lu C. CMFD prediction of departure from nucleate boiling critical heat flux in a tube [J]. Nuclear Science and Engineering, 2018, 38(6): 935-943.
[1] 李亚飞, 邓建强, 何阳. 跨临界CO2快速膨胀过程中非平衡冷凝和闪蒸机理的数值研究[J]. 化工学报, 2022, 73(7): 2912-2923.
[2] 陈昇, 王梦钶, 鲁波娜, 李秀峰, 刘岑凡, 刘梦溪, 范怡平, 卢春喜. 原料油汽化特性对催化裂化反应结焦过程影响的CFD模拟[J]. 化工学报, 2022, 73(7): 2982-2995.
[3] 万景, 张霖, 樊亚超, 刘勰民, 骆培成, 张锋, 张志炳. 基于介尺度PBM模型的生物反应器放大模拟及实验研究[J]. 化工学报, 2022, 73(6): 2698-2707.
[4] 刘怡琳, 李钰, 余亚雄, 黄哲庆, 周强. 基于重置温度方法的双参数介尺度气固传热模型构建[J]. 化工学报, 2022, 73(6): 2612-2621.
[5] 施炜斌, 龙姗姗, 杨晓钢, 蔡心悦. 计及气泡诱导与剪切湍流的气泡破碎、湍流相间扩散及传质模型[J]. 化工学报, 2022, 73(6): 2573-2588.
[6] 张文龙,宁尚雷,靳海波,马磊,何广湘,杨索和,郭晓燕,张荣月. 鼓泡塔内空气-醋酸体系流体力学参数的CFD-PBM耦合模型数值模拟[J]. 化工学报, 2022, 73(6): 2589-2602.
[7] 王利民, 郭舒宇, 向星, 付少童. 湍流系统的能量最小多尺度模型研究进展[J]. 化工学报, 2022, 73(6): 2415-2426.
[8] 胡善伟, 刘新华. 气固流化系统多尺度跨流域EMMS建模[J]. 化工学报, 2022, 73(6): 2514-2528.
[9] 管小平, 杨宁. 基于介尺度稳定性条件的多相流曳力与群体平衡模型[J]. 化工学报, 2022, 73(6): 2427-2437.
[10] 成文凯, 张先明, 王嘉骏, 冯连芳. 卧式单轴捏合反应器流动与混合特性的数值模拟[J]. 化工学报, 2022, 73(5): 1995-2007.
[11] 殷亚然, 朱星星, 张先明, 朱春英, 付涛涛, 马友光. 微通道内醇胺/离子液体复配水溶液吸收CO2的传质特性[J]. 化工学报, 2022, 73(5): 1930-1939.
[12] 刘鑫, 潘阳, 刘公平, 方静, 李春利, 李浩. 渗透汽化-隔壁塔精馏耦合初步分离费托合成水的过程研究[J]. 化工学报, 2022, 73(5): 2020-2030.
[13] 李岩, 田阿慧, 周毅. 反应性双射流中标量输运和化学反应特性[J]. 化工学报, 2022, 73(5): 1947-1963.
[14] 陈宏霞, 李林涵, 高翔, 王逸然, 郭宇翔. 基于气泡动力学分段调控浸润性强化核态沸腾[J]. 化工学报, 2022, 73(4): 1557-1565.
[15] 马荣, 孙杰, 李东辉, 魏进家. 基于Cu/TiO2/C-Wood复合材料的聚光太阳能驱动自漂浮高效海水汽化催化分解制氢体系[J]. 化工学报, 2022, 73(4): 1695-1703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!