化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2438-2451.doi: 10.11949/0438-1157.20211854

• 综述与专论 • 上一篇    下一篇

气液固流化床流动介尺度模型研究进展

马永丽1(),刘明言1,2(),胡宗定1   

  1. 1.天津大学化工学院,天津 300350
    2.化学工程联合国家重点实验室(天津大学),天津 300350
  • 收稿日期:2021-12-31 修回日期:2022-03-29 出版日期:2022-06-05 发布日期:2022-06-30
  • 通讯作者: 刘明言 E-mail:mayl@tju.edu.cn;myliu@tju.edu.cn
  • 作者简介:马永丽(1989—),女,博士,讲师,mayl@tju.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金项目(22008169);国家自然科学基金重大研究计划重点支持项目(91434204);国家自然科学基金重大研究计划集成项目(91834303)

Development of flow mesoscale modeling of the gas-liquid-solid fluidized beds

Yongli MA1(),Mingyan LIU1,2(),Zongding HU1   

  1. 1.School of Chemical Engineering, Tianjin University, Tianjin 300350, China
    2.State Key Laboratory of Chemical Engineering (Tianjin University), Tianjin 300350, China
  • Received:2021-12-31 Revised:2022-03-29 Published:2022-06-05 Online:2022-06-30
  • Contact: Mingyan LIU E-mail:mayl@tju.edu.cn;myliu@tju.edu.cn

摘要:

气液固流化床是一类重要的多相反应器,在化工及相关过程工业中有着广泛的应用。然而,由于对该类反应器内复杂的多相流动结构的定量描述十分有限,目前其设计和放大仍主要依赖经验,致使放大成功率低,反应结果达不到预期效果。因此,建立和完善气液固流化床内的三相流动机理模型,是实现该类反应器科学设计和放大的关键环节。对气液固流化床内的三相流动机理模型的研究进展进行了分析,着重总结了三相流动介尺度机理模型研究的新进展,并指出了存在的问题和进一步研究的方向,希望为该类反应器的基础研究和工业应用提供参考。

关键词: 流化床, 流动, 模型, 介尺度

Abstract:

The gas-liquid-solid fluidized bed is an important multi-phase reactor and has a wide range of applications in the chemical and related process industries. However, due to the very limited quantitative description of the complex multiphase flow structure in this type of reactor, its design and scale-up still mainly rely on experience, resulting in a low scale-up success rate and unpredictable reaction results. Therefore, establishing and perfecting the three-phase flow mechanism model in the gas-liquid-solid fluidized bed is the key link to realize the scientific design and scale-up of this type of reactor. This paper analyzes the research progress on the flow mechanism models of gas-liquid-solid fluidized bed with liquid phase as the fluidization medium, especially summarizes the new progress of mesoscale model of gas-liquid-solid flow, and points out the existing problems and the direction of further research, hoping to be a reference for the basic researches and industrial applications.

Key words: fluidized bed, flow, model, mesoscale

中图分类号: 

  • TQ 018
1 Stewart P S B, Davidson J F. Three-phase fluidization: water, particles and air [J]. Chemical Engineering Science, 1964, 19(4): 319-321.
2 Østergaard K. On bed porosity in gas-liquid fluidization[J]. Chemical Engineering Science, 1965, 20(2): 165-167.
3 Bhatia V K, Epstein N. Three-phase fluidization: a generalized wake model [C]// Fluidization and Its Application: Proceedings of the International Symposium. Toulouse, France: Cepadues-Editions, 1974: 380-392.
4 胡宗定, 张瑛, 黄璐, 等. 气-液-固三相流化床流动特性的研究[J]. 天津大学学报, 1983, 16(1): 15-24.
Hu Z D, Zhang Y, Huang L, et al. A study of the hydrodynamical characteristics of three-phase fluidized beds[J]. Journal of Tianjin University (Science and Technology), 1983, 16(1): 15-24.
5 胡宗定, 于宝田. 气液固三相流化工程[J]. 化学工程, 1986, 14(2): 20-27.
Hu Z D, Yu B T. Gas-liquid-solid fluidization engineering [J]. Chemical Engineering (China), 1986, 14(2): 20-27.
6 Fan L S. Gas-Liquid-Solid Fluidization Engineering [M]. Boston: Butterworth- Heinemann,1989.
7 Fan L S, Kreischer B E, Tsuchiya K. Recent advances in gas-liquid-solid fluidization: fundamentals and applications[C]// Proceedings of the AIChE Annual Meeting. Amsterdam, Netherlands: Elsevier, 1989: 105-169.
8 El-Temtamy S A, Epstein N. Simultaneous solids entrainment and de-entrainment above a three-phase fluidized bed [M]//Grace J R, Matsen J M. Fluidization. New York: Plenum Press, 1980: 519-528.
9 Jean R H, Fan L S. On the particle terminal velocity in a gas-liquid medium with liquid as the continuous phase[J]. The Canadian Journal of Chemical Engineering, 1987, 65(6): 881-886.
10 Fan L S, Jean R H, Kitano K. On the operating regimes of cocurrent upward gas-liquid-solid systems with liquid as the continuous phase[J]. Chemical Engineering Science, 1987, 42(7): 1853-1855.
11 Chen Y M, Fan L S. Drift flux in gas-liquid-solid fluidized systems from the dynamics of bed collapse[J]. Chemical Engineering Science, 1990, 45(4): 935-945.
12 胡宗定, 王一平, 白孟田, 等. 气液固三相流化床相含率四区模型的研究[J]. 化工学报, 1989,40(2):131-145.
Hu Z D, Wang Y P, Bai M T, et al. A four-region model to calculate the phase holdups of gas-liquid-solid three-phase fluidized bed[J]. Journal of Chemical Industry and Engineering (China), 1989,40(2):131-145.
13 Morooka S, Uchida K, Kato Y. Recirculating turbulent flow of liquid in gas-liquid-solid fluidized bed[J]. Journal of Chemical Engineering of Japan, 1982, 15(1): 29-34.
14 李静海. 两相流多尺度作用模型和能量最小方法[D]. 北京: 中国科学院化工冶金研究所, 1987.
Li J H. Multi-scale modeling and method of energy minimization for particle-fluid two phase flow[D]. Beijing: Institute of Chemical Metallurgy, Academia Sinica, 1987.
15 Li J H, Huang W L. Towards Mesoscience [M]. Berlin, Germany: Springer, 2014: 51-61.
16 Yang N, Chen J H, Ge W, et al. A conceptual model for analyzing the stability condition and regime transition in bubble columns[J]. Chemical Engineering Science, 2010, 65(1): 517-526.
17 Li J H, Wen L X, Ge W, et al. Dissipative structure in concurrent-up gas-solid flow[J]. Chemical Engineering Science, 1998, 53(19): 3367-3379.
18 Xu G W, Li J H. Analytical solution of the energy-minimization multi-scale model for gas-solid two-phase flow[J]. Chemical Engineering Science, 1998, 53(7): 1349-1366.
19 Yang N, Chen J H, Zhao H, et al. Explorations on the multi-scale flow structure and stability condition in bubble columns[J]. Chemical Engineering Science, 2007, 62(24): 6978-6991.
20 Xu G W, Li J H. Multi-scale interfacial stresses in heterogeneous particle-fluid systems[J]. Chemical Engineering Science, 1998, 53(18): 3335-3339.
21 Yang N, Wang W, Ge W, et al. CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient[J]. Chemical Engineering Journal, 2003, 96(1/2/3): 71-80.
22 Ge W, Li J H. Physical mapping of fluidization regimes—the EMMS approach[J]. Chemical Engineering Science, 2002, 57(18): 3993-4004.
23 Wang W, Li J H. Simulation of gas-solid two-phase flow by a multi-scale CFD approach— extension of the EMMS model to the sub-grid level[J]. Chemical Engineering Science, 2007, 62(1/2): 208-231.
24 Liu M Y, Li J H, Kwauk M. Application of the energy-minimization multi-scale method to gas-liquid-solid fluidized beds[J]. Chemical Engineering Science, 2001, 56(24): 6805-6812.
25 Jin G D. Multi-scale modeling of gas-liquid-solid three-phase fluidized beds using the EMMS method[J]. Chemical Engineering Journal, 2006, 117(1): 1-11.
26 Ma Y L, Liu M Y, Zhang Y. An improved meso-scale flow model of gas-liquid-solid fluidized beds[J]. Chemical Engineering Science, 2018, 179: 243-256.
27 Ma Y L, Liu M Y, Zhang Y. Axial meso-scale modeling of gas-liquid-solid fluidized beds[J]. Chemical Engineering Science, 2019, 196: 188-201.
28 Ma Y L, Liu M Y, Zhou X H, et al. Axial meso-scale modeling of gas-liquid-solid circulating fluidized beds[J]. Chemical Engineering Science, 2019, 208: 115139.
29 Ma Y L, Liu M Y, Li C, et al. Mesoscale model of radial hydrodynamics for fluidizing small particles with low solid holdup in gas-liquid-solid circulating fluidized bed[J]. Chemical Engineering Science, 2022, 250: 117413.
30 Gidaspow D, Bahary M, Jayaswal U K. Hydrodynamic models for gas-liquid-solid fluidization [C]// Crowe C T. Numerical Methods in Multiphase Flows, FED 185. New York: ASME, 1994: 117-124.
31 Mitra-Majumdar D, Farouk B, Shah Y T. Hydrodynamic modeling of three-phase flows through a vertical column[J]. Chemical Engineering Science, 1997, 52(24): 4485-4497.
32 Li Y, Zhang J P, Fan L S. Numerical simulation of gas-liquid-solid fluidization systems using a combined CFD-VOF-DPM method: bubble wake behavior[J]. Chemical Engineering Science, 1999, 54(21): 5101-5107.
33 罗运柏, 胡宗定. 烟气脱硫三相流化床反应器的数学模拟与预测放大[J]. 化工学报, 2002, 53(2): 122-127.
Luo Y B, Hu Z D. Scale-up and modeling of countercurrent three-phase fluidized reactor for flue gas desulfurization[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(2): 122-127.
34 Zhou X H, Ma Y L, Liu M Y, et al. CFD-PBM simulations on hydrodynamics and gas-liquid mass transfer in a gas-liquid-solid circulating fluidized bed[J]. Powder Technology, 2020, 362: 57-74.
35 Efremov G I, Vakhrushev I A. A study of the hydrodynamics of three-phase fluidized beds[J]. Chemistry and Technology of Fuels and Oils, 1969, 5: 541-545.
36 Rigby G R, Capes C E. Bed expansion and bubble wakes in three-phase fluidization[J]. The Canadian Journal of Chemical Engineering, 1970, 48(4): 343-348.
37 El-Temtamy S A, Epstein N. Bubble wake solids content in three-phase fluidized beds[J]. International Journal of Multiphase Flow, 1978, 4(1): 19-31.
38 Darton R C, Harrison D. Gas and liquid hold-up in three-phase fluidization[J]. Chemical Engineering Science, 1975, 30(5/6): 581-586.
39 Muroyama K, Hashimoto K, Toshima M, et al. Axial liquid dispersion in gas-liquid co-current flow through packed beds[J]. Kagaku Kogaku Ronbunshu, 1976, 2(3): 235-242.
40 Baker C G J, Kim S D, Bergougnou M A. Wake characteristics of three-phase fluidized beds[J]. Powder Technology, 1977, 18(2): 201-207.
41 Khang S J, Schwartz J G, Buttke R D. A practical wake model for estimating bed expansion and holdup in three phase fluidized systems[J]. AIChE Symposium Series, 1983,79 (222): 47-54.
42 Chern S H, Fan L S, Muroyama K. Hydrodynamics of cocurrent gas-liquid-solid semifluidization with a liquid as the continuous phase[J]. AIChE Journal, 1984, 30(2): 288-294.
43 Fan L, Tsuchiya K. Bubble Wake Dynamics in Liquids and Liquid-solid Suspensions[M]. Amsterdam: Elsevier, 1990.
44 Muroyama K, Fukuma M, Yasunishi A. Wall-to-bed heat transfer coefficient in gas-liquid-solid fluidized beds[J]. The Canadian Journal of Chemical Engineering, 1984, 62(2): 199-208.
45 Page R E, Harrison D. Particle entrainment from a three-phase fluidized bed [C]// Fluidization and Its Application: Proceedings of the International Symposium. Toulouse, France: Cepadues-Editions, 1974: 393-406.
46 Hu T T, Yu B, Wang Y A. four-region model to account radial distribution of phase holdup [C]// Fluidization Ⅴ: Proceedings of the Fifth Engineering Foundation Conference on Fluidization. Elsinore, Denmark: Engineering Foundation Press, 1986: 353-356.
47 Tian S H, Sun J Y, Fan X Q, et al. A volatile spray zone model and experimentation in a gas-solid fluidized bed with liquid injection[J]. Chemical Engineering Science, 2021, 231: 116306.
48 Matsuura A, Fan L S. Distribution of bubble properties in a gas-liquid-solid fluidized bed[J]. AIChE Journal, 1984, 30(6): 894-903.
49 Nacef S, Wild G, Laurent A, et al. Scale effects in gas-liquid-solid fluidization [J]. International Chemical Engineering, 1992, 32(1): 51-72.
50 Liang W G, Yu Z, Jin Y, et al. The phase holdups in a gas-liquid-solid circulating fluidized bed[J]. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 58(3): 259-264.
51 Liang W, Wu Q, Yu Z, et al. Hydrodynamics of a gas-liquid-solid three phase circulating fluidized bed[J]. The Canadian Journal of Chemical Engineering, 1995, 73(5): 656-661.
52 Liang W G, Wu Q W, Yu Z Q, et al. Flow regimes of the three-phase circulating fluidized bed[J]. AIChE Journal, 1995, 41(2): 267-271.
53 Kim S D, Baker C G I, Bergougnou M A. Phase holdup characteristics of three phase fluidized beds[J]. The Canadian Journal of Chemical Engineering, 1975, 53(1): 134-139.
54 Kato Y, Nishiwaki A, Fukuda T, et al. The behavior of suspended solid particles and liquid in bubble columns[J]. Journal of Chemical Engineering of Japan, 1972, 5(2): 112-118.
55 Imafuku K, Wang T Y, Koide K, et al. The behavior of suspended solid particles in the bubble column[J]. Journal of Chemical Engineering of Japan, 1968, 1(2): 153-158.
56 Smith D N, Ruether J A. Dispersed solid dynamics in a slurry bubble column[J]. Chemical Engineering Science, 1985, 40(5): 741-753.
57 Cova D R. Catalyst suspension in gas-agitated tubular reactors[J]. Industrial & Engineering Chemistry Process Design and Development, 1966, 5(1): 20-25.
58 Kojima H, Asano K. Hydrodynamic characteristics of suspension-bubble column[J]. Kagaku Kōgaku Ronbunshū,1980, 6(1): 46-52.
59 Matsumoto T, Hidaka N, Morooka S. Axial distribution of solid holdup in bubble column for gas-liquid-solid systems[J]. AIChE Journal, 1989, 35(10): 1701-1709.
60 Tsutsumi A, Charinpanitkul T, Yoshida K. Prediction of solid concentration profiles in three-phase reactors by a wake shedding model[J]. Chemical Engineering Science, 1992, 47(13/14): 3411-3418.
61 韩社教, 金涌, 俞芷青, 等. 气液固三相循环流化床中气固相含率轴径向的分布[J]. 高校化学工程学报, 1997, 11(3): 276-280.
Han S J, Jin Y, Yu Z Q, et al. Axial and radial distributions of gas and solid hold up in gas liquid solid three phase circulating fluidized bed[J]. Journal of Chemical Engineering of Chinese Universities, 1997, 11(3): 276-280.
62 Kato Y, Morooka S, Kago T, et al. Axial holdup distributions of gas and solid particles in three-phase fluidized bed for gas-liquid(slurry)-solid systems[J]. Journal of Chemical Engineering of Japan, 1985, 18(4): 308-313.
63 Kreischer B E, Moritomi H, Fan L S. Wake solids holdup characteristics behind a single bubble in a three-dimensional liquid-solid fluidized[J]. International Journal of Multiphase Flow, 1990, 16(2): 187-200.
64 Lee S L P, de Lasa H I. Phase holdups in three-phase fluidized beds[J]. AIChE Journal, 1987, 33(8): 1359-1370.
65 Razzak S A, Barghi S, Zhu J X. Axial hydrodynamic studies in a gas-liquid-solid circulating fluidized bed riser[J]. Powder Technology, 2010, 199(1): 77-86.
[1] 赵健, 周兴超, 夏丹, 董航. 机械搅拌对原油储罐射流加热过程传热特性的影响规律研究[J]. 化工学报, 2023, 74(5): 1982-1999.
[2] 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012.
[3] 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949.
[4] 范坤阳, 杨景兴, 许海波, 连兴容, 何凤梅, 陈聪慧, 李增耀. 遮光剂掺杂SiO2气凝胶传热的统一格子Boltzmann模型研究[J]. 化工学报, 2023, 74(5): 1974-1981.
[5] 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr()的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206.
[6] 郑书闽, 郭鹏程, 颜建国, 王帅, 李文博, 周淇. 微小通道内过冷流动沸腾阻力特性实验及预测研究[J]. 化工学报, 2023, 74(4): 1549-1560.
[7] 王倩倩, 刘明言, 马永丽. 水中超声波脱气的效应研究[J]. 化工学报, 2023, 74(4): 1693-1702.
[8] 李明川, 樊栓狮, 徐赋海, 卢惠东, 李晓军. 水合物热分解Stefan相变模型解的存在性及Laplace变换求解[J]. 化工学报, 2023, 74(4): 1746-1754.
[9] 张浩, 徐惠斌, 高健, 刘帝宏, 周泽华. Geldart-D类湿颗粒倾斜落料行为及其强化[J]. 化工学报, 2023, 74(4): 1519-1527.
[10] 吴选军, 王超, 曹子健, 蔡卫权. 数据与物理信息混合驱动的固定床吸附穿透深度学习模型[J]. 化工学报, 2023, 74(3): 1145-1160.
[11] 何洋, 高森虎, 吴青云, 张明理, 龙涛, 牛佩, 高景辉, 孟颖琪. 析湿工况下平直开缝翅片传热传质特性的数值研究[J]. 化工学报, 2023, 74(3): 1073-1081.
[12] 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227.
[13] 顾学荣, 刘硕士, 杨思宇. 基于并行EGO和代理模型辅助的多参数优化方法研究[J]. 化工学报, 2023, 74(3): 1205-1215.
[14] 高靖博, 孙强, 李青, 王逸伟, 郭绪强. 考虑水合物结构转变的含氢气体水合物相平衡模型[J]. 化工学报, 2023, 74(2): 666-673.
[15] 郑杰元, 张先伟, 万金涛, 范宏. 丁香酚环氧有机硅树脂的制备及其固化动力学研究[J]. 化工学报, 2023, 74(2): 924-932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!