化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2452-2467.DOI: 10.11949/0438-1157.20220072
周晨阳1,2(),贾颖1,赵跃民1,张勇3,付芝杰4,冯昱清5,段晨龙1()
收稿日期:
2022-01-03
修回日期:
2022-03-02
出版日期:
2022-06-05
发布日期:
2022-06-30
通讯作者:
段晨龙
作者简介:
周晨阳(1992—),男,博士,博士后,基金资助:
Chenyang ZHOU1,2(),Ying JIA1,Yuemin ZHAO1,Yong ZHANG3,Zhijie FU4,Yuqing FENG5,Chenlong DUAN1()
Received:
2022-01-03
Revised:
2022-03-02
Online:
2022-06-05
Published:
2022-06-30
Contact:
Chenlong DUAN
摘要:
煤炭在保障我国能源安全中具有重要作用。干法重介流态化分选是煤炭分选加工领域的重要组成部分,有助于推动我国煤炭资源的高效洁净利用。流态化分选密度的稳定调控是实现高效分选的必要条件,调控的核心是如何削弱气泡扰动作用,关键是理解流态化分选过程中介尺度结构的演变及调控机制。从介尺度视角分析了气固流态化干法分选调控过程的关键科学问题,梳理了单元干法分选设备以及系统放大过程中介尺度结构的研究进展,分析了介尺度结构的演变规律,提出了介尺度结构的精准调控策略,对干法流态化的工业推广应用及煤炭的分选提质具有重要意义。
中图分类号:
周晨阳, 贾颖, 赵跃民, 张勇, 付芝杰, 冯昱清, 段晨龙. 介尺度视角下干法重介流态化分选过程强化[J]. 化工学报, 2022, 73(6): 2452-2467.
Chenyang ZHOU, Ying JIA, Yuemin ZHAO, Yong ZHANG, Zhijie FU, Yuqing FENG, Chenlong DUAN. Intensification of dry dense medium fluidization separation process from a mesoscale perspective[J]. CIESC Journal, 2022, 73(6): 2452-2467.
1 | 国务院. 《新时代的中国能源发展》白皮书[R]. 北京: 中华人民共和国国务院, 2020. |
China's State Council. Energy in China's New Era[R]. Beijing: China's State Council, 2020. | |
2 | 谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(7): 2197-2211. |
Xie H P, Ren S H, Xie Y C, et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society, 2021, 46(7): 2197-2211. | |
3 | Xia W C, Xie G Y, Peng Y L. Recent advances in beneficiation for low rank coals[J]. Powder Technology, 2015, 277: 206-221. |
4 | Meffe S, Perkson A, Trass O. Coal beneficiation and organic sulfur removal[J]. Fuel, 1996, 75(1): 25-30. |
5 | Mukherje A K, Bhattacharjee D, Mishra B K. Role of water velocity for efficient jigging of iron ore[J]. Minerals Engineering, 2006, 19(9): 952-959. |
6 | Ni C, Xie G Y, Liu B, et al. Effect of bubbles addition on teetered bed separation[J]. International Journal of Mining Science and Technology, 2015, 25(5): 835-841. |
7 | Cebeci Y, Ulusoy U, Sönmez İ. Determination of optimum washing conditions for a lignite coal based on ash and sulfur content[J]. Fuel, 2014, 123: 52-58. |
8 | Demirbaş A. Demineralization and desulfurization of coals via column froth flotation and different methods[J]. Energy Conversion and Management, 2002, 43(7): 885-895. |
9 | Duan C L, Zhou C Y, Dong L, et al. A novel dry beneficiation technology for pyrite recovery from high sulfur gangue[J]. Journal of Cleaner Production, 2018, 172: 2475-2484. |
10 | Fan X C, Zhou C Y, Zhao Y M, et al. Flow pattern transition and coal beneficiation in gas solid fluidized bed with novel secondary distributor[J]. Advanced Powder Technology, 2018, 29: 1255-1264. |
11 | Yu X D, Luo Z F, Gan D Q. Desulfurization of high sulfur fine coal using a novel combined beneficiation process[J]. Fuel, 2019, 254: 115603. |
12 | Chagwedera K M, Bada S O, Falcon R M S. Evaluation of alternative solid media for coal beneficiation using an air dense-medium fluidized bed[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2018, 118(8): 883-890. |
13 | Lv B, Luo Z F, Zhang B. Fluidization and separation characteristics of gas-solid separation fluidized bed with wet coal[J]. Fuel, 2018, 219: 492-501. |
14 | Zhu G Q, Zhang B, Zhao P F, et al. Upgrading low-quality oil shale using high-density gas-solid fluidized bed[J]. Fuel, 2019, 252: 666-674. |
15 | Mak C, Choung J, Beauchamp R, et al. Potential of air dense medium fluidized bed separation of mineral matter for mercury rejection from Alberta sub-bituminous coal[J]. International Journal of Coal Preparation and Utilization, 2008, 28(2): 115-132. |
16 | Azimi E, Karimipour S, Xu Z, et al. Statistical analysis of coal beneficiation performance in a continuous air dense medium fluidized bed separator[J]. International Journal of Coal Preparation and Utilization, 2017, 37(1): 12-32. |
17 | Choung J, Mak C, Xu Z. Fine coal beneficiation using an air dense medium fluidized bed[J]. International Journal of Coal Preparation, 2006, 26(1): 1-15. |
18 | Sahu A K, Tripathy A, Biswal S K. Study on particle dynamics in different cross sectional shapes of air dense medium fluidized bed separator[J]. Fuel, 2013, 111: 472-477. |
19 | Sahu A K, Tripathy A, Biswal S K, et al. Stability study of an air dense medium fluidized bed separator for beneficiation of high-ash Indian coal[J]. International Journal of Coal Preparation and Utilization, 2011, 31(3/4): 127-148. |
20 | Mohanta S, Rao C S, Daram A B, et al. Air dense medium fluidized bed for dry beneficiation of coal: technological challenges for future[J]. Particulate Science and Technology, 2013, 31(1): 16-27. |
21 | Mohanta S, Chakraborty S, Meikap B C. Influence of coal feed size on the performance of air dense medium fluidized bed separator used for coal beneficiation[J]. Industrial & Engineering Chemistry Research, 2011, 50(18): 10865-10871. |
22 | Mohanta S, Chakraborty S, Meikap B C. Optimization process of an air dense medium fluidized bed separator for treating high-ash non-coking Indian coal[J]. Mineral Processing and Extractive Metallurgy Review, 2013, 34(4): 240-248. |
23 | Oshitani J, Kawahito T, Yoshida M, et al. Improvement of dry float-sink separation of smaller sized spheres by reducing the fluidized bed height[J]. Advanced Powder Technology, 2012, 23(1): 27-30. |
24 | Oshitani J, Isei Y, Yoshida M, et al. Influence of air bubble size on float-sink of spheres in a gas-solid fluidized bed[J]. Advanced Powder Technology, 2012, 23(1): 120-123. |
25 | Oshitani J, Ohnishi M, Yoshida M, et al. Dry separation of particulate iron ore using density-segregation in a gas-solid fluidized bed[J]. Advanced Powder Technology, 2013, 24(2): 554-559. |
26 | Yoshida M, Oshitani J, Tani K, et al. Fluidized bed medium separation (FBMS) using the particles with different hydrophilic and hydrophobic properties[J]. Advanced Powder Technology, 2011, 22(1): 108-114. |
27 | Higashida K, Rai K, Yoshimori W, et al. Dynamic vertical forces working on a large object floating in gas-fluidized bed: discrete particle simulation and Lagrangian measurement[J]. Chemical Engineering Science, 2016, 151: 105-115. |
28 | Zhao Y M, Li G M, Luo Z F, et al. Industrial application of a modularized dry-coal-beneficiation technique based on a novel air dense medium fluidized bed[J]. International Journal of Coal Preparation and Utilization, 2017, 37(1): 44-57. |
29 | 周晨阳. Geldart A类加重质气固分选流化床的密度调控研究[D]. 徐州: 中国矿业大学, 2019. |
Zhou C Y. Density adjustment in gas-solid fluidized bed for beneficiation using geldart A dense medium[D]. Xuzhou: China University of Mining and Technology, 2019. | |
30 | Jiang Y, Chen Z Q, Shao H N, et al. The effect of a porous medium on fluidization characteristics in air dense medium fluidized bed[J]. Powder Technology, 2016, 301: 1227-1234. |
31 | Lv B, Luo Z F, Zhang B, et al. Effect of the secondary air distribution layer on separation density in a dense-phase gas-solid fluidized bed[J]. International Journal of Mining Science and Technology, 2015, 25(6): 969-973. |
32 | Wei L B, Chen Q R. Calculation of drag force on an object settling in gas-solid fluidized beds[J]. Particulate Science and Technology, 2001, 19(3): 229-238. |
33 | Zhou E H, Zhao Y M, Duan C L, et al. Fluidization characteristics and fine coal dry beneficiation using a pronation-grille baffle dense phase medium fluidized bed[J]. Fuel, 2016, 185: 555-564. |
34 | Zhou E H, Zhang Y D, Zhao Y M, et al. Characteristic gas velocity and fluidization quality evaluation of vibrated dense medium fluidized bed for fine coal separation[J]. Advanced Powder Technology, 2018, 29(4): 985-995. |
35 | Ge W, Lu L Q, Liu S W, et al. Multiscale discrete supercomputing - a game changer for process simulation? [J]. Chemical Engineering & Technology, 2015, 38(4): 575-584. |
36 | 张亚东. 基于多信号耦合分析的振动分选流化床中气泡动态行为特性研究[D]. 徐州: 中国矿业大学, 2020. |
Zhang Y D. Study on the buble dynamic behavior in vibrating separation fluidized bed based on multi-signal coupling analysis[D]. Xuzhou: China University of Mining and Technology, 2020. | |
37 | Dong L, Zhao Y M, Peng L P, et al. Characteristics of pressure fluctuations and fine coal preparation in gas-vibro fluidized bed[J]. Particuology, 2015, 21: 146-153. |
38 | Zhang Y D, Zhang J B, Zhao Y M, et al. Investigations on dynamics of bubble in a 2D vibrated fluidized bed using pressure drop signal and high-speed image analysis[J]. Chemical Engineering Journal, 2020, 395: 125129. |
39 | 段晨龙,刘锡波,周晨阳,等.基于电容层析成像技术(ECT)对干法重介流化床中分离机制的研究[J]. 煤炭学报, 2022, 47(2): 945-957. |
Duan C L, Liu X B, Zhou C Y, et al. Research progress of electrical capacitance tomography application in dry dense medium separation fluidized bed[J]. Journal of China Coal Society, 2022, 47(2): 945-957. | |
40 | Liu X B, Fan X C, Zhao Y M, et al. Particles movement behavior and apparent density in gas-solid fluidized bed as determined by an electronic dynamometer and electrical capacitance tomography[J]. Chemical Engineering Journal, 2022, 429: 132463. |
41 | Sun Z N, Han B W, Bai T Z, et al. Comparison of hydrodynamics in a gas-solids fluidized bed with binary particle systems for dry coal beneficiation[J]. Chemical Engineering Science, 2022, 247: 117028. |
42 | Han B W. Bubble dynamics and bed expansion for single-component and binary gas-solid fluidization systems[D]. London: Western University, 2017. |
43 | Bai T Z. Bubble dynamics and dense phase composition in 2D binary gas-solid fluidized bed[D]. London: Western University, 2018. |
44 | Wang Q G, Feng Y Q, Lu J F, et al. Numerical study of particle segregation in a coal beneficiation fluidized bed by a TFM-DEM hybrid model: influence of coal particle size and density[J]. Chemical Engineering Journal, 2015, 260: 240-257. |
45 | 尹炜迪, 王庆功, 吕俊复, 等. 选煤流化床内气固流动和颗粒分层的数值模拟[J]. 中国矿业大学学报, 2019(2):430-436. |
Yin W D, Wang Q G, Lv J F, et al. Modelling of the gas-solid flow and particle segregation behavior in coal beneficiation fluidized beds[J]. Journal of China University of Mining & Technology, 2019(2):430-436. | |
46 | Wang Q G, Yang H R, Feng Y Q, et al. Numerical study of the effect of operation parameters on particle segregation in a coal beneficiation fluidized bed by a TFM-DEM hybrid model[J]. Chemical Engineering Science, 2015, 131: 256-270. |
47 | 王庆功. 非均一颗粒在浓相流化床系统中的流动行为研究[D]. 北京: 清华大学, 2015. |
Wang Q G. Flow behavior of multi-size particles in dense fluidized bed systems[D]. Beijing: Tsinghua University, 2015. | |
48 | Zhang Y, Zhao Y M, Lu L Q, et al. Assessment of polydisperse drag models for the size segregation in a bubbling fluidized bed using discrete particle method[J]. Chemical Engineering Science, 2017, 160: 106-112. |
49 | 张勇. 气固分选流化床中多组分颗粒分层与混合的数值模拟研究[D]. 徐州: 中国矿业大学, 2019. |
Zhang Y. Numerical study of the segregation and mixing of polydisperse particles in gas-solid separating fluidized beds[D]. Xuzhou: China University of Mining and Technology, 2019. | |
50 | 付芝杰. 气固分选流化床两相分布及密度调控机制研究[D]. 徐州: 中国矿业大学, 2017. |
Fu Z J. Research on the mechanism of two-phase distribution and density regulation of separating gas-solid fluidized bed[D]. Xuzhou: China University of Mining and Technology, 2017. | |
51 | Fu Z J, Zhu J, Barghi S, et al. On the two-phase theory of fluidization for Geldart B and D particles[J]. Powder Technology, 2019, 354: 64-70. |
52 | Ge W, Wang W, Yang N, et al. Meso-scale oriented simulation towards virtual process engineering (VPE) - The EMMS paradigm[J]. Chemical Engineering Science, 2011, 66(19): 4426-4458. |
53 | Liu X H, Guo L, Xia Z J, et al. Harnessing the power of virtual reality[J]. Chemical Engineering Progress, 2012, 108(7): 28-33. |
54 | Zhang Y, Zhao Y M, Gao Z L, et al. Experimental and Eulerian-Lagrangian-Lagrangian study of binary gas-solid flow containing particles of significantly different sizes[J]. Renewable Energy, 2019, 136: 193-201. |
55 | Queteschiner D, Lichtenegger T, Pirker S, et al. Multi-level coarse-grain model of the DEM[J]. Powder Technology, 2018, 338: 614-624. |
56 | Kanjilal S, Schneiderbauer S. A revised coarse-graining approach for simulation of highly poly-disperse granular flows[J]. Powder Technology, 2021, 385: 517-527. |
57 | Zhou C Y, Dong L, Zhao Y M, et al. Studies on bed density in a gas-vibro fluidized bed for coal cleaning[J]. ACS Omega, 2019, 4(7): 12817-12826. |
58 | Geldart D. Types of gas fluidization[J]. Powder Technology, 1973, 7(5): 285-292. |
59 | Zhou E H, Zhang Y D, Zhao Y M, et al. Collaborative optimization of vibration and gas flow on fluidization quality and fine coal segregation in a vibrated dense medium fluidized bed[J]. Powder Technology, 2017, 322: 497-509. |
60 | Zhou E H, Zhang Y D, Zhao Y M, et al. Effect of vibration energy on fluidization and 1-6 mm coal separation in a vibrated dense medium fluidized bed[J]. Separation Science and Technology, 2018, 53(14): 2297-2313. |
61 | Zhang Y D, Zhang X Y, Zhao Y M, et al. Bubble growth obtained from pressure fluctuation in vibration separation fluidized bed using wavelet analysis[J]. Advanced Powder Technology, 2020, 31(8): 3287-3296. |
62 | Dong L, Zhao Y M, Duan C L, et al. Characteristics of bubble and fine coal separation using active pulsing air dense medium fluidized bed[J]. Powder Technology, 2014, 257: 40-46. |
63 | Dong L, Zhou E H, Peng L P, et al. Analysis of interaction between bubbles and particles in a dense gas-vibro fluidized bed[J]. Chemical Engineering Science, 2017, 161: 265-273. |
64 | Li Y J, Zhou C Y, Lv G N, et al. Prediction of minimum fluidization velocity in pulsed gas-solid fluidized bed[J]. Chemical Engineering Journal, 2021, 417: 127965. |
65 | Dong L, Zhu F L, Li Y J, et al. Experimental and numerical study of the characteristics of the forced oscillation in a pulsation fluidized bed (PFB) for coal separation[J]. Chemical Engineering Science, 2021, 234: 116459. |
66 | Li Y J, Zhou C Y, Zhang G S, et al. Gas–solid distribution theory in a pulsed fluidized bed based on the intermediate phase[J]. Industrial & Engineering Chemistry Research, 2021, 60(7): 3228-3238. |
67 | Dong L, Zhang B, Zhang Y, et al. Kinetic characteristics of the particles in a dense-phase pulsed fluidized bed for dry beneficiation[J]. The Canadian Journal of Chemical Engineering, 2017, 95(6): 1133-1140. |
68 | Abrahamsen A R, Geldart D. Behaviour of gas-fluidized beds of fine powders ( Ⅰ ) : Homogeneous expansion[J]. Powder Technology, 1980, 26(1): 35-46. |
69 | Abrahamsen A R, Geldart D. Behaviour of gas-fluidized beds of fine powders (Ⅱ): Voidage of the dense phase in bubbling beds[J]. Powder Technology, 1980, 26(1): 47-55. |
70 | 赵跃民, 李功民, 骆振福, 等. 模块式干法重介质流化床选煤理论与工业应用[J]. 煤炭学报, 2014, 39(8): 1566-1571. |
Zhao Y M, Li G M, Luo Z F, et al. Theory of modularized dry coal beneficiation and its application based on an air dense medium fluidized bed[J]. Journal of China Coal Society, 2014, 39(8): 1566-1571. | |
71 | Zhou C Y, Liu X B, Zhao Y M, et al. Recent progress and potential challenges in coal upgrading via gravity dry separation technologies[J]. Fuel, 2021, 305: 121430. |
72 | Fu Z J, Zhu J, Barghi S, et al. Dry coal beneficiation by the semi-industrial air dense medium fluidized bed with binary mixtures of magnetite and fine coal particles[J]. Fuel, 2019, 243: 509-518. |
73 | Luo Z F, Zhao Y M, Tao X X, et al. Progress in dry coal cleaning using air-dense medium fluidized beds[J]. International Journal of Coal Preparation and Utilization, 2003, 23(1/2): 13-20. |
74 | Luo Z F, Chen Q R. Dry beneficiation technology of coal with an air dense-medium fluidized bed[J]. International Journal of Mineral Processing, 2001, 63(3): 167-175. |
[1] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[2] | 刘倩, 曹禹, 周琦, 穆景山, 历伟. 孔道结构修饰的Ziegler-Natta催化剂设计与高抗冲低缠结UHMWPE的制备[J]. 化工学报, 2023, 74(3): 1092-1101. |
[3] | 陈号, 田仪娟, 全学军, 蒋子文, 李纲. 铬铁矿在HCl-HF体系中的分解行为[J]. 化工学报, 2023, 74(3): 1161-1174. |
[4] | 王凯玥, 马永丽, 李琛, 刘明言. 气液固微型流化床的气液传质系数[J]. 化工学报, 2022, 73(8): 3529-3540. |
[5] | 侯跃辉, 刘璇, 廉应江, 韩梅, 尧超群, 陈光文. 超声微反应器内三硝基间苯三酚合成工艺研究[J]. 化工学报, 2022, 73(8): 3597-3607. |
[6] | 王利民, 郭舒宇, 向星, 付少童. 湍流系统的能量最小多尺度模型研究进展[J]. 化工学报, 2022, 73(6): 2415-2426. |
[7] | 徐珂, 史国强, 薛冬峰. 无机杂化钙钛矿团簇材料:介尺度钙钛矿材料发光性质研究[J]. 化工学报, 2022, 73(6): 2748-2756. |
[8] | 蒋鸣, 周强. 气固流化床介尺度结构形成机制及过滤曳力模型研究进展[J]. 化工学报, 2022, 73(6): 2468-2485. |
[9] | 朱嫣然, 葛亮, 李兴亚, 徐铜文. 三相结构离子交换膜的构筑及应用研究[J]. 化工学报, 2022, 73(6): 2397-2414. |
[10] | 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676. |
[11] | 李铁男, 赵碧丹, 赵鹏, 张永民, 王军武. 气固流化床启动阶段挡板内构件受力特性的CFD-DEM模拟[J]. 化工学报, 2022, 73(6): 2649-2661. |
[12] | 郑默, 李晓霞. ReaxFF MD模拟揭示的煤热解挥发分自由基反应的竞争与协调[J]. 化工学报, 2022, 73(6): 2732-2741. |
[13] | 孟博, 刘艳萍, 蒋新科, 韩一帆. Fe5C2-MnO x 尺度调控及催化合成气制烯烃性能研究[J]. 化工学报, 2022, 73(6): 2677-2689. |
[14] | 唐天琪, 何玉荣. 磁场对湿颗粒流化床系统中介尺度结构影响机制研究[J]. 化工学报, 2022, 73(6): 2636-2648. |
[15] | 陈泉, 郑泽希, 李然, 孙其诚, 杨晖. 散斑能见度光谱法测量筒仓内颗粒流的颗粒温度[J]. 化工学报, 2022, 73(6): 2603-2611. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 190
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 432
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||