化工学报 ›› 2023, Vol. 74 ›› Issue (5): 2022-2033.DOI: 10.11949/0438-1157.20230303
张正1(), 何永平2, 孙海东2, 张荣子2, 孙正平2, 陈金兰2, 郑一璇1, 杜晓1(
), 郝晓刚1(
)
收稿日期:
2023-03-28
修回日期:
2023-05-09
出版日期:
2023-05-05
发布日期:
2023-06-29
通讯作者:
杜晓,郝晓刚
作者简介:
张正(1993—),男,博士研究生,zzhangtyut@163.com
基金资助:
Zheng ZHANG1(), Yongping HE2, Haidong SUN2, Rongzi ZHANG2, Zhengping SUN2, Jinlan CHEN2, Yixuan ZHENG1, Xiao DU1(
), Xiaogang HAO1(
)
Received:
2023-03-28
Revised:
2023-05-09
Online:
2023-05-05
Published:
2023-06-29
Contact:
Xiao DU, Xiaogang HAO
摘要:
通过交替、对称地堆叠带孔的锰酸锂(LiMn2O4)基膜电极和导电炭黑(C)基膜电极,组装了单通道的蛇形流场电控离子交换(ESIX)装置,并将其用于从高镁锂比模拟卤水(Mg/Li约500)中选择性提取锂离子。基于这种自下而上的蛇形流场,增加膜组件中腔室的数量可以使模拟卤水中更多的锂离子被捕获。相较于常规的恒电压驱动模式,恒电流-恒电压耦合驱动模式能有效地提升ESIX装置的提锂性能。在0.8 mA·cm-2-1 V的耦合驱动模式下,该装置在120 min内对锂离子的提取率高达97.6%。此外,X射线衍射(XRD)证明,通过冲洗膜电极表面可以去除大部分吸附的镁离子。因此,这种新型的ESIX装置具有从高镁锂比盐湖卤水中选择性分离锂离子的工业应用潜力。
中图分类号:
张正, 何永平, 孙海东, 张荣子, 孙正平, 陈金兰, 郑一璇, 杜晓, 郝晓刚. 蛇形流场电控离子交换装置用于选择性提锂[J]. 化工学报, 2023, 74(5): 2022-2033.
Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium[J]. CIESC Journal, 2023, 74(5): 2022-2033.
图3 LiMn2O4/C/PVDF-b-PAA复合物(a)和LiMn2O4/C/PVDF-b-PAA膜电极横截面(b)的SEM图
Fig.3 SEM image of LiMn2O4/C/PVDF-b-PAA composite (a) and cross-sectional SEM image of the film coated electrode (b)
图4 LiMn2O4/C/PVDF-b-PAA复合物及其在氧化电位和还原电位下的XRD谱图
Fig.4 XRD patterns of LiMn2O4/C/PVDF-b-PAA composite and LiMn2O4/C/PVDF-b-PAA composite at oxidation potential and reduction potential
图5 LiMn2O4/C/PVDF-b-PAA膜电极不同溶液中的CV响应(扫描速率:0.1 mV·s-1)
Fig.5 CV responses of the LiMn2O4/C/PVDF-b-PAA film coated electrode in different aqueous solutions
图6 LiMn2O4/C/PVDF-b-PAA膜电极在不同扫描速率下的CV曲线(a);膜电极的峰电流与扫描速率的平方根(v1/2)之间的关系(b)
Fig.6 CV curves of the LiMn2O4/C/PVDF-b-PAA film coated electrode at different scan rates (a); Relationship between the peak currents and the square root of the scan rate (v1/2) for the film coated electrode (b)
图11 回收液中锂离子的脱嵌率和镁锂比(a);LiMn2O4/C/PVDF-b-PAA在电化学预脱嵌锂离子后、电化学捕获测试后及清洗后的XRD谱图(b)
Fig.11 Deintercalation efficiency of Li+ and Mg/Li ratio in the recovery solution (a); XRD patterns of LiMn2O4/C/PVDF-b-PAA after electrochemical deintercalation of Li+, after electrochemical capture test and after rinsing (b)
1 | 王晓丽, 杨文胜. 电化学提锂体系及其电极材料的研究进展[J]. 化工学报, 2021, 72(6): 2957-2971. |
Wang X L, Yang W S. Research progress of electrochemical lithium extraction systems and electrode materials[J]. CIESC Journal, 2021, 72(6): 2957-2971. | |
2 | Wang Q, Du X, Gao F F, et al. A novel H1.6Mn1.6O4/reduced graphene oxide composite film for selective electrochemical capturing lithium ions with low concentration[J]. Separation and Purification Technology, 2019, 226: 59-67. |
3 | 徐文华, 刘冬福, 何利华, 等. 电化学脱嵌法盐湖提锂电极反应动力学研究[J]. 化工学报, 2021, 72(6): 3105-3115. |
Xu W H, Liu D F, He L H, et al. Kinetic study on electrochemical intercalation/deintercalation method for lithium extraction from brine[J]. CIESC Journal, 2021, 72(6): 3105-3115. | |
4 | 蒋晨啸, 陈秉伦, 张东钰, 等. 我国盐湖锂资源分离提取进展[J]. 化工学报, 2022, 73(2): 481-503. |
Jiang C X, Chen B L, Zhang D Y, et al. Progress in isolating lithium resources from China salt lake brine[J]. CIESC Journal, 2022, 73(2): 481-503. | |
5 | Sun Y, Wang Q, Wang Y H, et al. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine[J]. Separation and Purification Technology, 2021, 256: 117807. |
6 | 罗清龙, 董明哲, 李军, 等. 吸附法分离盐湖卤水中锂的研究进展[J]. 盐湖研究, 2023, 31(1): 106-115. |
Luo Q L, Dong M Z, Li J, et al. Research progress of lithium separation from salt lake brine by adsorption method[J]. Journal of Salt Lake Research, 2023, 31(1): 106-115. | |
7 | 刘东帆, 孙淑英, 于建国. 盐湖卤水提锂技术研究与发展[J]. 化工学报, 2018, 69(1): 141-155. |
Liu D F, Sun S Y, Yu J G. Research and development on technique of lithium recovery from salt lake brine[J]. CIESC Journal, 2018, 69(1): 141-155. | |
8 | 王琪, 赵有璟, 刘洋, 等. 高镁锂比盐湖镁锂分离与锂提取技术研究进展[J]. 化工学报, 2021, 72(6): 2905-2921. |
Wang Q, Zhao Y J, Liu Y, et al. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine with high magnesium/lithium ratio[J]. CIESC Journal, 2021, 72(6): 2905-2921. | |
9 | 刘冬福, 熊家春, 徐文华, 等. 磷酸盐沉淀法从富锂液中选择性提锂[J]. 中国有色金属学报, 2021, 31(9): 2541-2550. |
Liu D F, Xiong J C, Xu W H, et al. Lithium selective extraction from lithium-enriched solution by phosphate precipitation[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(9): 2541-2550. | |
10 | Su H, Li Z, Zhang J, et al. Recovery of lithium from salt lake brine using a mixed ternary solvent extraction system consisting of TBP, FeCl3 and P507[J]. Hydrometallurgy, 2020, 197: 105487. |
11 | 李燕, 王敏, 赵有璟, 等. 纳滤膜对高镁锂比盐湖卤水镁锂分离性能研究[J]. 化工学报, 2021, 72(6): 3130-3139. |
Li Y, Wang M, Zhao Y J, et al. Study on separation of magnesium and lithium from salt lake brine with high magnesium-to-lithium mass ratio by nanofiltration membrane[J]. CIESC Journal, 2021, 72(6): 3130-3139. | |
12 | 柏春, 郭敏, 张慧芳, 等. 离子筛型锂吸附剂吸附法从盐湖卤水/海水中提锂的研究进展[J]. 化工进展, 2017, 36(3): 802-809. |
Bai C, Guo M, Zhang H F, et al. The research progress of extracting lithium from brine by lithium ion sieve[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 802-809. | |
13 | Zhao B, Qian Z Q, Qiao Y J, et al. The Li(H2O) n dehydration behavior influences the Li+ ion adsorption on H4Ti5O12 with different facets exposed[J]. Chemical Engineering Journal, 2023, 451: 138870. |
14 | 郭志远, 纪志永, 陈华艳, 等. 电化学提锂技术中电极材料和电极体系的研究进展[J]. 化工进展, 2020, 39(6): 2294-2303. |
Guo Z Y, Ji Z Y, Chen H Y, et al. Progress of electrode materials and electrode systems in electrochemical lithium extraction process[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2294-2303. | |
15 | 李燕, 王敏, 赵有璟, 等. 用于盐湖提锂的聚酰胺复合纳滤膜制备及其性能研究[J]. 盐湖研究, 2023, 31(1): 1-10. |
Li Y, Wang M, Zhao Y J, et al. Preparation and properties of polyamide nanofiltration membrane for lithium extraction from salt lake brine[J]. Journal of Salt Lake Research, 2023, 31(1): 1-10. | |
16 | Abdulazeez I, Baig N, Salhi B, et al. Electrochemical behavior of novel electroactive LaTi4Mn3O12/polyaniline composite for Li+-ion recovery from brine with high selectivity[J]. Separation and Purification Technology, 2023, 309: 122997. |
17 | Kanoh H, Ooi K, Miyai Y, et al. Electrochemical recovery of lithium ions in the aqueous phase[J]. Separation Science and Technology, 1993, 28(1/2/3): 643-651. |
18 | Marchini F, Williams F J, Calvo E J. Sustainable selective extraction of lithium chloride from natural brine using a Li1- x Mn2O4 ion pump[J]. Journal of the Electrochemical Society, 2018, 165(14): A3292-A3298. |
19 | 殷睿鑫, 何利华, 唐忠阳, 等. 电化学脱嵌法盐湖提锂多孔LiFePO4电极的制备[J]. 矿产保护与利用, 2021, 41(3): 155-160. |
Yin R X, He L H, Tang Z Y, et al. Preparation of porous LiFePO4 electrode of electrochemical de-intercalation/intercalation method for lithium extraction from brine[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 155-160. | |
20 | Liu D F, Xu W H, Xiong J C, et al. Electrochemical system with LiMn2O4 porous electrode for lithium recovery and its kinetics[J]. Separation and Purification Technology, 2021, 270: 118809. |
21 | 朱江伟, 马鹏飞, 杜晓, 等. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067. |
Zhu J W, Ma P F, Du X, et al. Specific electronically controlled separation of phosphate anions based on variable valence NiFe-LDH/rGO[J]. CIESC Journal, 2022, 73(7): 3057-3067. | |
22 | Niu J J, Yan W J, Zhang W, et al. Potential-responsive ions-selectively capture effect for efficient removal of copper ions from wastewater[J]. Electrochimica Acta, 2020, 330: 135249. |
23 | Du X, Guan G Q, Li X M, et al. A novel electroactive λ-MnO2/PPy/PSS core-shell nanorod coated electrode for selective recovery of lithium ions at low concentration[J]. Journal of Materials Chemistry A, 2016, 4(36): 13989-13996. |
24 | Zhang Z, Du X, Wang Q, et al. A scalable three-dimensional porous λ-MnO2/rGO/Ca-alginate composite electroactive film with potential-responsive ion-pumping effect for selective recovery of lithium ions[J]. Separation and Purification Technology, 2021, 259: 118111. |
25 | Niu J J, Yan W J, Song X Y, et al. An electrically switched ion exchange system with self-electrical-energy recuperation for efficient and selective LiCl separation from brine lakes[J]. Separation and Purification Technology, 2021, 274: 118995. |
26 | Zhang H X, Du X A, Ding S Q, et al. DFT calculations of the synergistic effect of λ-MnO2/graphene composites for electrochemical adsorption of lithium ions[J]. Physical Chemistry Chemical Physics, 2019, 21(15): 8133-8140. |
27 | Cheng Y H, Chen Z, Zhu M F, et al. Polyacrylic acid assisted assembly of oxide particles and carbon nanotubes for high-performance flexible battery anodes[J]. Advanced Energy Materials, 2015, 5(6): 1401207. |
28 | Su A Y, Pang Q, Chen X, et al. Lithium poly-acrylic acid as a fast Li+ transport media and a highly stable aqueous binder for Li3V2(PO4)3 cathode electrodes[J]. Journal of Materials Chemistry A, 2018, 6(46): 23357-23365. |
29 | Erinmwingbovo C, Siller V, Nuñez M, et al. Effect of film thickness on the kinetics of lithium insertion in LiMn2O4 films made by multilayer pulsed laser deposition for thin-film all-solid-state battery cathode materials[J]. ChemElectroChem, 2023, 10(4): e202200759. |
30 | Zhao A, Liu J C, Ai X P, et al. Highly selective and pollution-free electrochemical extraction of lithium by a polyaniline/Li x Mn2O4 cell[J]. ChemSusChem, 2019, 12(7): 1361-1367. |
31 | Guo Z Y, Ji Z Y, Wang J, et al. Electrochemical lithium extraction based on “rocking-chair” electrode system with high energy-efficient: the driving mode of constant current-constant voltage[J]. Desalination, 2022, 533: 115767. |
32 | Guo Z Y, Ji Z Y, Chen H Y, et al. Effect of impurity ions in the electrosorption lithium extraction process: generation and restriction of “selective concentration polarization”[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(31): 11834-11844. |
33 | Missoni L L, Marchini F, del Pozo M, et al. A LiMn2O4-polypyrrole system for the extraction of LiCl from natural brine[J]. Journal of the Electrochemical Society, 2016, 163(9): A1898-A1902. |
[1] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[2] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[3] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[4] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[5] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[6] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[7] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[8] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[9] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[10] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[11] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[12] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[13] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[14] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[15] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 518
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||