化工学报 ›› 2024, Vol. 75 ›› Issue (5): 1816-1829.DOI: 10.11949/0438-1157.20231244
师毓辉1,2(), 邢继远1,2, 姜雪晗1,3, 叶爽1,2,3(), 黄伟光1,2,3
收稿日期:
2023-12-01
修回日期:
2024-02-02
出版日期:
2024-05-25
发布日期:
2024-06-25
通讯作者:
叶爽
作者简介:
师毓辉(1999—),男,硕士研究生,shiyh@sari.ac.cn
基金资助:
Yuhui SHI1,2(), Jiyuan XING1,2, Xuehan JIANG1,3, Shuang YE1,2,3(), Weiguang HUANG1,2,3
Received:
2023-12-01
Revised:
2024-02-02
Online:
2024-05-25
Published:
2024-06-25
Contact:
Shuang YE
摘要:
针对利用离心泵制备微气泡时叶轮内气泡尺寸较大且分布不均问题探究不同入口含气率(IGVF)和转速对离心泵叶轮内气泡直径和分布的影响,采用欧拉-欧拉非均匀双流体模型与群体平衡模型进行耦合,求解离心泵叶轮内气液两相旋转流场,并且结合涡识别方法、Luo破碎合并模型对离心泵叶轮内气泡分布规律进行分析。结果表明:①叶片前缘以及吸力面附近存在的涡旋导致气体聚集,引起流道内局部含气率增大,此处气泡合并效应占主导;②流量和转速一定时,随IGVF的增加,流道内湍流强度增加,旋涡后移导致气相聚集区域同样向后延伸,吸力面的高局部含气率区域增大面积显著高于压力面,因此吸力面气泡合并行为更为显著,气泡直径更大;③IGVF和流量一定时,小范围内提升转速可以使气泡破碎效应增强,获得更小直径的气泡。
中图分类号:
师毓辉, 邢继远, 姜雪晗, 叶爽, 黄伟光. 基于PBM的离心式叶轮内气泡破碎合并数值模拟[J]. 化工学报, 2024, 75(5): 1816-1829.
Yuhui SHI, Jiyuan XING, Xuehan JIANG, Shuang YE, Weiguang HUANG. Numerical simulation of bubble breakup and coalescence in centrifugal impeller based on PBM[J]. CIESC Journal, 2024, 75(5): 1816-1829.
设计流量 Qdesign/(m3/h) | 设计扬程 H/m | 额定转速 n/(r/min) | 叶轮进口直径 D1/mm | 叶轮出口直径 D2/mm | 叶片出口宽度 b2/mm | 泵出口直径 D2/mm | 叶片数 Z |
---|---|---|---|---|---|---|---|
15 | 17 | 3000 | 50 | 115 | 9.2 | 40 | 7 |
表1 离心泵几何模型主要结构参数
Table 1 Main structural parameters of geometry of centrifugal pump
设计流量 Qdesign/(m3/h) | 设计扬程 H/m | 额定转速 n/(r/min) | 叶轮进口直径 D1/mm | 叶轮出口直径 D2/mm | 叶片出口宽度 b2/mm | 泵出口直径 D2/mm | 叶片数 Z |
---|---|---|---|---|---|---|---|
15 | 17 | 3000 | 50 | 115 | 9.2 | 40 | 7 |
气泡离散组 | 直径/mm |
---|---|
bin0 | 10.00 |
bin1 | 5.99 |
bin2 | 3.59 |
bin3 | 2.15 |
bin4 | 1.29 |
bin5 | 0.77 |
bin6 | 0.46 |
bin7 | 0.28 |
bin8 | 0.17 |
bin9 | 0.10 |
表2 PBM离散气泡尺寸
Table 2 Discrete bubble sizes in PBM
气泡离散组 | 直径/mm |
---|---|
bin0 | 10.00 |
bin1 | 5.99 |
bin2 | 3.59 |
bin3 | 2.15 |
bin4 | 1.29 |
bin5 | 0.77 |
bin6 | 0.46 |
bin7 | 0.28 |
bin8 | 0.17 |
bin9 | 0.10 |
研究变量 | 设置条件 |
---|---|
入口含气率 | 转速:1500 r/min |
入口含气率:0.32%、1.04%、2.21%、3.25%、4.86% | |
入口气泡直径:bin4 | |
运行流量:42%Qdesign | |
转速 | 转速:1200 r/min、1500 r/min、1800 r/min |
入口含气率:0.32% | |
入口气泡直径:bin4 | |
运行流量:42%Qdesign |
表3 数值模拟方案
Table 3 Numerical simulation scheme
研究变量 | 设置条件 |
---|---|
入口含气率 | 转速:1500 r/min |
入口含气率:0.32%、1.04%、2.21%、3.25%、4.86% | |
入口气泡直径:bin4 | |
运行流量:42%Qdesign | |
转速 | 转速:1200 r/min、1500 r/min、1800 r/min |
入口含气率:0.32% | |
入口气泡直径:bin4 | |
运行流量:42%Qdesign |
图7 有效破碎频率、有效合并频率随α、ε的变化
Fig.7 Effective breakup frequency and effective coalescence frequency varied with local gas content and turbulent dissipation rate
1 | Temesgen T, Bui T T, Han M, et al. Micro and nanobubble technologies as a new horizon for water-treatment techniques: a review[J]. Advances in Colloid and Interface Science, 2017, 246: 40-51. |
2 | Dupre V, Ponasse M, Aurelle Y, et al. Bubble formation by water release in nozzles(Ⅰ): Mechanisms[J]. Water Research, 1998, 32(8): 2491-2497. |
3 | Zhao D Z, Ding T Y, Li X S, et al. Ozone catalytic oxidation of HCHO in air over MnO x at room temperature[J]. Chinese Journal of Catalysis, 2012, 33(2/3): 396-401. |
4 | Xu Q Y, Nakajima M, Ichikawa S, et al. A comparative study of microbubble generation by mechanical agitation and sonication[J]. Innovative Food Science & Emerging Technologies, 2008, 9(4): 489-494. |
5 | 李兆军, 杜浩. 我国微细气泡技术发展综述[J]. 过程工程学报, 2017, 17(4): 655-663. |
Li Z J, Du H. Review of the development of fine bubble technology in China[J]. Chinese Journal of Process Engineering, 2017, 17(4): 655-663. | |
6 | Ahmed N, Jameson G J. The effect of bubble size on the rate of flotation of fine particles[J]. International Journal of Mineral Processing, 1985, 14(3): 195-215. |
7 | 高颂, 徐燕燕, 李继香, 等. 基于TFM-PBM耦合模型的离心泵内微气泡破碎合并的模拟研究[J]. 化工学报, 2021, 72(10): 5082-5093. |
Gao S, Xu Y Y, Li J X, et al. Simulation study of microbubbles break-up and coalescence in centrifugal pump based on TFM-PBM coupling model[J]. CIESC Journal, 2021, 72(10): 5082-5093. | |
8 | Murakami M, Minemura K. Effects of entrained air on the performance of centrifugal pumps: 2nd report, effects of number of blades[J]. Bulletin of JSME, 1974, 17(112): 1286-1295. |
9 | Murakami M, Minemura K. Effects of entrained air on the performance of a centrifugal pump: 1st report, performance and flow conditions[J]. Bulletin of JSME, 1974, 17(110): 1047-1055. |
10 | Barrios L, Prado M G. Experimental visualization of two-phase flow inside an electrical submersible pump stage[J]. Journal of Energy Resources Technology, 2011, 133(4): 1. |
11 | Monte Verde W, Biazussi J L, Sassim N A, et al. Experimental study of gas-liquid two-phase flow patterns within centrifugal pumps impellers[J]. Experimental Thermal and Fluid Science, 2017, 85: 37-51. |
12 | Shao C L, Li C Q, Zhou J F. Experimental investigation of flow patterns and external performance of a centrifugal pump that transports gas-liquid two-phase mixtures[J]. International Journal of Heat and Fluid Flow, 2018, 71: 460-469. |
13 | Ito K, Xiong R D, Ito D, et al. X-ray radiography and numerical simulation of bubble behavior in centrifugal pump[J]. Japanese Journal of Multiphase Flow, 2021, 35(1): 101-108. |
14 | Ofuchi E M, Silva H L V, Bertoldi D, et al. Study of the bubble motion in a centrifugal rotor based on visualization in a rotating frame of reference[J]. Chemical Engineering Science, 2022, 259: 117829. |
15 | Hundshagen M, Rave K, Nguyen B D, et al. Two-phase flow simulations of liquid/gas transport in radial centrifugal pumps with special emphasis on the transition from bubbles to adherent gas accumulations[J]. Journal of Fluids Engineering, 2022, 144(10): 101202. |
16 | Si Q R, Bois G, Liao M Q, et al. A comparative study on centrifugal pump designs and two-phase flow characteristic under inlet gas entrainment conditions[J]. Energies, 2019, 13(1): 65. |
17 | Stel H, Ofuchi E M, Chiva S, et al. Numerical simulation of gas-liquid flows in a centrifugal rotor[J]. Chemical Engineering Science, 2020, 221: 115692. |
18 | Chen Y M, Patil A, Chen Y, et al. Numerical study on the first stage head degradation in an electrical submersible pump with population balance model[J]. Journal of Energy Resources Technology, 2019, 141(2): 022003. |
19 | Zhu J J, Zhu H W, Zhang J C, et al. A numerical study on flow patterns inside an electrical submersible pump (ESP) and comparison with visualization experiments[J]. Journal of Petroleum Science and Engineering, 2019, 173: 339-350. |
20 | Ge Z G, He D H, Huang R, et al. Application of CFD-PBM coupling model for analysis of gas-liquid distribution characteristics in centrifugal pump[J]. Journal of Petroleum Science and Engineering, 2020, 194: 107518. |
21 | He D H, Ge Z G, Bai B F, et al. Gas-liquid two-phase performance of centrifugal pump under bubble inflow based on computational fluid dynamics-population balance model coupling model[J]. Journal of Fluids Engineering, 2020, 142(8): 081402. |
22 | Zhang F, Zhu L F, Chen K, et al. Numerical simulation of gas-liquid two-phase flow characteristics of centrifugal pump based on the CFD–PBM[J]. Mathematics, 2020, 8(5): 769. |
23 | Stel H, Ofuchi E M, Chiva S, et al. Numerical assessment of performance characteristics and two-phase flow dynamics of a centrifugal rotor operating under gas entrainment condition[J]. Experimental and Computational Multiphase Flow, 2022, 4(3): 221-240. |
24 | Tao S J, Shi G T, Xiao Y X, et al. Effect of operating parameters on the coalescence and breakup of bubbles in a multiphase pump based on a CFD-PBM coupled model[J]. Journal of Marine Science and Engineering, 2022, 10(11): 1693. |
25 | 覃成鹏, 杨宁. 多相分散体系中气泡/液滴聚并和破碎的群平衡模拟[J]. 化学进展, 2016, 28(8): 1207-1223. |
Qin C P, Yang N. Population balance modeling of breakage and coalescence of dispersed bubbles or droplets in multiphase systems[J]. Progress in Chemistry, 2016, 28(8): 1207-1223. | |
26 | Valentas K J, Amundson N R. Breakage and coalescence in dispersed phase systems[J]. Industrial & Engineering Chemistry Fundamentals, 1966, 5(4): 533-542. |
27 | Kuboi R, Komasawa I, Otake T. Collision and coalescence of dispersed drops in turbulent liquid flow[J]. Journal of Chemical Engineering of Japan, 1972, 5(4): 423-424. |
28 | Ross S L. Measurements and Models of the Dispersed Phase Mixing Process [D]. Ann Arbor: University of Michigan, 1971. |
29 | Coulaloglou C A, Tavlarides L L. Description of interaction processes in agitated liquid-liquid dispersions[J]. Chemical Engineering Science, 1977, 32(11): 1289-1297. |
30 | Lee C H, Erickson L E, Glasgow L A. Bubble breakup and coalescence in turbulent gas-liquid dispersions[J]. Chemical Engineering Communications, 1987, 59(1/2/3/4/5/6): 65-84. |
31 | Prince M J, Blanch H W. Bubble coalescence and break-up in air-sparged bubble columns[J]. AIChE Journal, 1990, 36(10): 1485-1499. |
32 | Luo H A, Svendsen H F. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233. |
33 | Zhang J Y, Cai S J, Li Y J, et al. Visualization study of gas-liquid two-phase flow patterns inside a three-stage rotodynamic multiphase pump[J]. Experimental Thermal and Fluid Science, 2016, 70: 125-138. |
34 | Liao Y X, Lucas D. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions[J]. Chemical Engineering Science, 2009, 64(15): 3389-3406. |
35 | 邢雷, 高金明, 蒋明虎, 等. 聚结破碎模型在水力旋流器模拟中的应用与对比[J]. 化学工程, 2021, 49(6): 46-51. |
Xing L, Gao J M, Jiang M H, et al. Application and comparison of coalescence and breakage model in simulation of hydrocyclone[J]. Chemical Engineering (China), 2021, 49(6): 46-51. | |
36 | 王福军. 流体机械旋转湍流计算模型研究进展[J]. 农业机械学报, 2016, 47(2): 1-14. |
Wang F J. Research progress of computational model for rotating turbulent flow in fluid machinery[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(2): 1-14. | |
37 | Ishii M, Hibiki T. Thermo-Fluid Dynamics of Two-Phase Flow[M]. New York, NY: Springer New York, 2011. |
38 | Minemura K, Murakami M. A theoretical study on air bubble motion in a centrifugal pump impeller[J]. Journal of Fluids Engineering, 1980, 102(4): 446-453. |
39 | Maxey M R, Riley J J. Equation of motion for a small rigid sphere in a nonuniform flow[J]. Physics of Fluids, 1983, 26(4): 883-889. |
40 | Legendre D, Magnaudet J. The lift force on a spherical bubble in a viscous linear shear flow[J]. Journal of Fluid Mechanics, 1998, 368(1): 81-126. |
41 | 张振铎. 泡状入流条件下离心泵叶轮内气液两相流动特性及对泵性能影响实验研究[D]. 西安: 西安理工大学, 2019. |
Zhang Z D. Experimental study on gas-liquid flow characteristics and pump performance of centrifugal pump impeller under bubble inflow[D]. Xi’an: Xi’an University of Technology, 2019. | |
42 | 戈振国. 基于CFD-PBM耦合模型的离心泵气液两相流动特性研究[D]. 西安: 西安理工大学, 2019. |
Ge Z G. Investigation on gas-liquid two-phase flow characteristics of centrifugal pump based on CFD-PBM coupling model[D]. Xi’an: Xi’an University of Technology, 2019. | |
43 | 梁晓飞, 姚亚, 罗正鸿. 流化催化裂化提升管反应器的CFD-PBM耦合模型: 矩方法适用性比较[J]. 化工学报, 2016, 67(8): 3224-3233. |
Liang X F, Yao Y, Luo Z H. Comparison of suitability of MOMs in solving CFD-PBM coupling model for FCC riser reactors[J]. CIESC Journal, 2016, 67(8): 3224-3233. | |
44 | 赵斌娟, 谢昀彤, 廖文言, 等. 第二代涡识别方法在混流泵内部流场中的适用性分析[J]. 机械工程学报, 2020, 56(14): 216-223. |
Zhao B J, Xie Y T, Liao W Y, et al. Adaptability analysis of second generation vortex recognition method in internal flow field of mixed-flow pumps[J]. Journal of Mechanical Engineering, 2020, 56(14): 216-223. | |
45 | He D H, Wang G, Liu Z, et al. Bubble breakage and aggregation characteristics in a vortex pump under bubble inflow[J]. Physics of Fluids, 2023, 35(9): 093301. |
[1] | 关朝阳, 黄国庆, 张一喃, 陈宏霞, 杜小泽. 泡沫铜导离气泡强化流动沸腾换热实验研究[J]. 化工学报, 2024, 75(5): 1765-1776. |
[2] | 汪威, 白旭, 赵翔, 马学良, 林纬, 喻九阳. 基于响应面法的气浮旋流分离条件优化[J]. 化工学报, 2024, 75(5): 1929-1938. |
[3] | 刘帆, 张芫通, 陶成, 胡成玉, 杨小平, 魏进家. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786. |
[4] | 李昂, 赵振宇, 李洪, 高鑫. 微波诱导高分散Pd/FeP催化剂构筑及其电催化性能研究[J]. 化工学报, 2024, 75(4): 1594-1606. |
[5] | 陈思睿, 毕景良, 王雷, 李元媛, 陆规. 气液两相流流型特征无监督提取的卷积自编码器:机理及应用[J]. 化工学报, 2024, 75(3): 847-857. |
[6] | 成文凯, 颜金钰, 王嘉骏, 冯连芳. 卧式捏合反应器及其在聚合工业中的研究进展[J]. 化工学报, 2024, 75(3): 768-781. |
[7] | 谭耀文, 姜攀星, 杜青, 余婉秋, 温小飞, 詹志刚. 工作电压对PEMFC膜电极衰退影响模拟研究[J]. 化工学报, 2024, 75(3): 974-986. |
[8] | 谷世良, 谭博仁, 程全中, 姚玮洁, 董志鹏, 许峰, 王勇. 轴流泵式混合室内水力学特征的数值模拟[J]. 化工学报, 2024, 75(3): 815-822. |
[9] | 李乃良, 刘常松, 杜雪平, 张一帆, 韩东太. 基于Hurst指数的严重段塞流多尺度分形特性[J]. 化工学报, 2024, 75(2): 484-492. |
[10] | 刘志鹏, 赵长颖, 吴睿, 张智昊. 基于水电解制氢的梯度多孔传输层中气液流动可视化实验研究[J]. 化工学报, 2024, 75(2): 520-530. |
[11] | 詹小斌, 王会彬, 蒋亚龙, 史铁林. 声共振混合器高黏度流体混合的功耗特性研究[J]. 化工学报, 2024, 75(2): 531-542. |
[12] | 刘起超, 张世博, 周云龙, 李昱庆, 陈聪, 冉议文. 起伏振动水平管气液两相流型及转变机理[J]. 化工学报, 2024, 75(2): 493-504. |
[13] | 李文俊, 赵中阳, 倪震, 周灿, 郑成航, 高翔. 基于气-液传质强化的湿法烟气脱硫CFD模拟研究[J]. 化工学报, 2024, 75(2): 505-519. |
[14] | 崔怡洲, 李成祥, 翟霖晓, 刘束玉, 石孝刚, 高金森, 蓝兴英. 亚毫米气泡和常规尺寸气泡气液两相流流动与传质特性对比[J]. 化工学报, 2024, 75(1): 197-210. |
[15] | 麻雪怡, 刘克勤, 胡激江, 姚臻. POE溶液聚合反应器内混合与反应过程的CFD研究[J]. 化工学报, 2024, 75(1): 322-337. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||