化工学报 ›› 2024, Vol. 75 ›› Issue (6): 2190-2200.DOI: 10.11949/0438-1157.20240013
收稿日期:
2024-01-03
修回日期:
2024-04-03
出版日期:
2024-06-25
发布日期:
2024-07-03
通讯作者:
兰忠
作者简介:
王芝安(1998—),男,硕士研究生,wza0922@mail.dlut.edu.cn
基金资助:
Zhian WANG(), Zhong LAN(
), Xuehu MA
Received:
2024-01-03
Revised:
2024-04-03
Online:
2024-06-25
Published:
2024-07-03
Contact:
Zhong LAN
摘要:
反应器喷嘴的作用是维持水热火焰在复杂流场中保持稳定。建立内预热式蒸腾壁反应器(IPTWR)内甲醇超临界水热燃烧过程计算流体力学模型,分析了喷嘴的材料热物性和结构参数对进料混合特性及火焰结构的影响规律。结果表明,喷嘴材料传热特性的提高使水热火焰朝高温和广域的方向发展;氧气-辅热混合段直径由18 mm减小到14 mm,反应器轴向温度峰值由954.84 K升高到981.60 K,火焰位置向远端移动;随着喷嘴缩进深度减小,水热火焰逐渐向喷嘴出口聚拢,表现为火焰收缩现象。在此喷嘴结构参数范围内小直径的短氧气-辅热混合流道有助于水热火焰的温度升高和聚拢稳定。结果可为内预热式蒸腾壁反应器的喷嘴设计提供理论指导。
中图分类号:
王芝安, 兰忠, 马学虎. 喷嘴参数对超临界水热燃烧特性影响的模拟[J]. 化工学报, 2024, 75(6): 2190-2200.
Zhian WANG, Zhong LAN, Xuehu MA. Simulation of effect of nozzle parameters on supercritical hydrothermal combustion characteristics[J]. CIESC Journal, 2024, 75(6): 2190-2200.
参数 | 数值 |
---|---|
辅助热流体入口流量Fau/(kg·h-1) | 9.53 |
辅助热流体入口温度Tau/K | 825 |
原料入口流量Ff/(kg·h-1) | 2.97 |
原料浓度ωin | 0.35 |
氧化剂入口流量Fox/(kg·h-1) | 2.45 |
高温蒸腾水入口流量Ftw1/(kg·h-1) | 19 |
高温蒸腾水入口温度Ttw1/K | 625 |
低温蒸腾水入口流量Ftw2/(kg·h-1) | 19 |
表1 反应器操作条件
Table 1 Reactor operating conditions
参数 | 数值 |
---|---|
辅助热流体入口流量Fau/(kg·h-1) | 9.53 |
辅助热流体入口温度Tau/K | 825 |
原料入口流量Ff/(kg·h-1) | 2.97 |
原料浓度ωin | 0.35 |
氧化剂入口流量Fox/(kg·h-1) | 2.45 |
高温蒸腾水入口流量Ftw1/(kg·h-1) | 19 |
高温蒸腾水入口温度Ttw1/K | 625 |
低温蒸腾水入口流量Ftw2/(kg·h-1) | 19 |
混合流道直径Dm/mm | 喷嘴(内)/mm | 喷嘴(中)/mm | 喷嘴(外)/mm |
---|---|---|---|
14 | ϕ12×3 | ϕ25×5.5 | ϕ42×6 |
15 | ϕ13×3.5 | ϕ25×5 | ϕ42×6 |
16 | ϕ14×4 | ϕ25×4.5 | ϕ42×6 |
17 | ϕ15×4.5 | ϕ25×4 | ϕ42×6 |
18 | ϕ16×5 | ϕ25×3.5 | ϕ42×6 |
表2 反应器喷嘴尺寸参数
Table 2 Reactor nozzle size parameters
混合流道直径Dm/mm | 喷嘴(内)/mm | 喷嘴(中)/mm | 喷嘴(外)/mm |
---|---|---|---|
14 | ϕ12×3 | ϕ25×5.5 | ϕ42×6 |
15 | ϕ13×3.5 | ϕ25×5 | ϕ42×6 |
16 | ϕ14×4 | ϕ25×4.5 | ϕ42×6 |
17 | ϕ15×4.5 | ϕ25×4 | ϕ42×6 |
18 | ϕ16×5 | ϕ25×3.5 | ϕ42×6 |
图9 氧气质量分数在混合流道出口上半区的分布曲线(不同混合流道直径)
Fig.9 Distribution curves of oxygen mass fraction in upper half of mixing runner outlet (different mixing runner diameters)
1 | Du X, Zhang R, Gan Z X, et al. Treatment of high strength coking wastewater by supercritical water oxidation[J]. Fuel, 2013, 104: 77-82. |
2 | Wei N, Xu D H, Hao B T, et al. Chemical reactions of organic compounds in supercritical water gasification and oxidation[J]. Water Research, 2021, 190: 116634. |
3 | Li S B, Xia X B, Qin Q, et al. Decomposition of oil cleaning agents from nuclear power plants by supercritical water oxidation[J]. Nuclear Science and Techniques, 2022, 33(4): 47. |
4 | Qin Q, Wang S, Wang H Y, et al. Treatment of radioactive spent extraction solvent by supercritical water oxidation[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314(2): 1169-1176. |
5 | Yang J Q, Wang S Z, Li Y H, et al. Novel design concept for a commercial-scale plant for supercritical water oxidation of industrial and sewage sludge[J]. Journal of Environmental Management, 2019, 233: 131-140. |
6 | Chen Z, Chen H Z, Liu X L, et al. An inclined plug-flow reactor design for supercritical water oxidation[J]. Chemical Engineering Journal, 2018, 343: 351-361. |
7 | 石德智, 张金露, 胡春艳, 等. 超临界水氧化技术处理污泥的研究与应用进展[J]. 化工学报, 2017, 68(1): 37-49. |
Shi D Z, Zhang J L, Hu C Y, et al. Research and application progress of supercritical water oxidation technology on waste sludge treatment[J]. CIESC Journal, 2017, 68(1): 37-49. | |
8 | 闫正文, 廖传华, 廖玮, 等. 无机盐在超临界水中的溶解度研究[J]. 应用化工, 2018, 47(3): 514-516. |
Yan Z W, Liao C H, Liao W, et al. A study on the solubility of inorganic salts in supercritical water[J]. Applied Chemical Industry, 2018, 47(3): 514-516. | |
9 | Qin Q, Wang S, Peng H H, et al. Solubility of radioactive inorganic salt in supercritical water[J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317(2): 947-957. |
10 | Xu D H, Huang C B, Wang S Z, et al. Characteristics analysis of water film in transpiring wall reactor[J]. International Journal of Heat and Mass Transfer, 2016, 100: 559-565. |
11 | Xu D H, Feng P, Wang Y, et al. Effects of structural parameters on water film properties of transpiring wall reactor[J]. AIChE Journal, 2022, 68(2): 17472-1-17472-11. |
12 | Bermejo M D, Fdez-Polanco F, Cocero M J. Experimental study of the operational parameters of a transpiring wall reactor for supercritical water oxidation[J]. The Journal of Supercritical Fluids, 2006, 39(1): 70-79. |
13 | Xu D H, Wang S Z, Huang C B, et al. Transpiring wall reactor in supercritical water oxidation[J]. Chemical Engineering Research and Design, 2014, 92(11): 2626-2639. |
14 | Xu D H, Huang C B, Wang S Z, et al. Salt deposition problems in supercritical water oxidation[J]. Chemical Engineering Journal, 2015, 279: 1010-1022. |
15 | Reddy S N, Nanda S, Okolie J A, et al. Hydrothermal flames for subaquatic, terrestrial and extraterrestrial applications[J]. Journal of Hazardous Materials, 2022, 424: 127520. |
16 | Fan M J, Shao S Y, Wang H Z, et al. Numerical analysis of hydrogen-oxygen hydrothermal combustion: laminar counterflow diffusion flames[J]. International Journal of Hydrogen Energy, 2024, 49: 278-292. |
17 | He W Q, Li Z C, Li Y H, et al. Prospects of supercritical hydrothermal combustion as recovery technology for heavy oil reservoirs[J]. Geoenergy Science and Engineering, 2023, 227: 211795. |
18 | Liang Z J, Zhang F M, Li M Y, et al. Formation and evolution characteristics of hydrothermal flames inside a transpiring wall reactor: a transient numerical investigation[J]. The Journal of Supercritical Fluids, 2022, 188: 105692. |
19 | Reddy S N, Nanda S, Kumar P, et al. Impacts of oxidant characteristics on the ignition of n-propanol-air hydrothermal flames in supercritical water[J]. Combustion and Flame, 2019, 203: 46-55. |
20 | Zhang F M, Xu C Y, Zhang Y, et al. Experimental study on the operating characteristics of an inner preheating transpiring wall reactor for supercritical water oxidation: temperature profiles and product properties[J]. Energy, 2014, 66: 577-587. |
21 | 唐旭, 陈海峰, 阳明君, 等. 超临界水氧化/气化反应器的CFD模拟研究进展[J]. 应用化工, 2021, 50(2): 504-510, 515. |
Tang X, Chen H F, Yang M J, et al. Current research processes in CFD simulation of supercritical water oxidation/gasification reactor[J]. Applied Chemical Industry, 2021, 50(2): 504-510, 515. | |
22 | Feng P, Xu D H, Ma M Y, et al. Effects of key parameters on water film properties and temperature field distribution inside transpiring wall reactor[J]. The Journal of Supercritical Fluids, 2023, 192: 105811. |
23 | Fan M J, Li G X, Wang H X, et al. Numerical study of hydrogen hydrothermal combustion characteristics in a coaxial nozzle burner[J]. The Journal of Supercritical Fluids, 2022, 183: 105537. |
24 | Sierra-Pallares J, Parra-Santos M T, García-Serna J, et al. Numerical analysis of high-pressure fluid jets: application to RTD prediction in supercritical reactors[J]. The Journal of Supercritical Fluids, 2009, 49(2): 249-255. |
25 | Ren M M, Wang S Z, Roekaerts D. Numerical study of the counterflow diffusion flames of methanol hydrothermal combustion: the real-fluid effects and flamelet analysis[J]. The Journal of Supercritical Fluids, 2019, 152: 104552. |
26 | Brock E E, Oshima Y, Savage P E, et al. Kinetics and mechanism of methanol oxidation in supercritical water[J]. Journal of Physical Chemistry, 1996, 100(39): 15834-15842. |
27 | Zhang F M, Ma J N, Su C J. Study on the uniformity of water film in a transpiring wall reactor for supercritical water oxidation[J]. Canadian Journal of Chemical Engineering, 2020, 98(7): 1631-1644. |
28 | Bermejo M D, Martín Á, Queiroz J P S, et al. Computational fluid dynamics simulation of a transpiring wall reactor for supercritical water oxidation[J]. Chemical Engineering Journal, 2010, 158(3): 431-440. |
29 | Zhang J, Ren M M, Li Y H, et al. Continuous supercritical hydrothermal combustion experimental and burner structure optimization simulation study[J]. Chemical Engineering Research and Design, 2022, 188: 69-80. |
30 | Zhang F M, Chen J L, Su C J, et al. Combined effects of protective film and oxidant on the performance of the supercritical water oxidation system with a film protective reactor: a simulation study[J]. Process Safety and Environmental Protection, 2019, 131: 268-281. |
31 | Wang C J, Wang Y, Fan X Z, et al. Preparation and thermophysical properties of La2(Zr0.7Ce0.3)2O7 ceramic via sol-gel process[J]. Surface and Coatings Technology, 2012, 212: 88-93. |
32 | Zhang F M, Yang J, Ma J N, et al. Optimization of structural parameters of an inner preheating transpiring-wall SCWO reactor[J]. Chemical Engineering Research and Design, 2019, 141: 372-387. |
[1] | 王文雅, 张玮, 楼小玲, 钟若菲, 陈冰冰, 贠军贤. 纳米纤维素嵌合型晶胶微球的多微管成形与模拟[J]. 化工学报, 2024, 75(5): 2060-2071. |
[2] | 师毓辉, 邢继远, 姜雪晗, 叶爽, 黄伟光. 基于PBM的离心式叶轮内气泡破碎合并数值模拟[J]. 化工学报, 2024, 75(5): 1816-1829. |
[3] | 刘帆, 张芫通, 陶成, 胡成玉, 杨小平, 魏进家. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786. |
[4] | 李云璇, 刘新悦, 陈熙, 刘文, 周明月, 蓝兴英. 基于固液氧化还原靶向反应的能量存储技术:材料、器件及动力学[J]. 化工学报, 2024, 75(4): 1222-1240. |
[5] | 范以薇, 刘威, 李盈盈, 王培霞, 张吉松. 有机液体储氢中全氢化乙基咔唑催化脱氢研究进展[J]. 化工学报, 2024, 75(4): 1198-1208. |
[6] | 薛潇, 商敏静, 苏远海. 微反应器内药物连续流合成的研究进展[J]. 化工学报, 2024, 75(4): 1439-1454. |
[7] | 何宇航, 谢丹, 吕阳成. 微反应器内阳离子聚合研究进展[J]. 化工学报, 2024, 75(4): 1302-1316. |
[8] | 王成秀, 宋大山, 李之辉, 杨潇, 蓝兴英, 高金森, 徐春明. Geldart C类脱硫灰颗粒在环流耦合提升管内稳定流动特性[J]. 化工学报, 2024, 75(4): 1485-1496. |
[9] | 韩宇, 周乐, 张鑫, 罗勇, 孙宝昌, 邹海魁, 陈建峰. 高黏附性Pd/SiO2/NF整体式催化剂的制备及加氢性能研究[J]. 化工学报, 2024, 75(4): 1533-1542. |
[10] | 谷世良, 谭博仁, 程全中, 姚玮洁, 董志鹏, 许峰, 王勇. 轴流泵式混合室内水力学特征的数值模拟[J]. 化工学报, 2024, 75(3): 815-822. |
[11] | 陈饶, 赵鑫, 陈戴欣, 姜圣坤, 廉应江, 王金波, 杨梅, 陈光文. 微反应器内甲苯连续二硝化制备二硝基甲苯[J]. 化工学报, 2024, 75(3): 867-876. |
[12] | 成文凯, 颜金钰, 王嘉骏, 冯连芳. 卧式捏合反应器及其在聚合工业中的研究进展[J]. 化工学报, 2024, 75(3): 768-781. |
[13] | 谭耀文, 姜攀星, 杜青, 余婉秋, 温小飞, 詹志刚. 工作电压对PEMFC膜电极衰退影响模拟研究[J]. 化工学报, 2024, 75(3): 974-986. |
[14] | 马韶阳, 徐涵卓, 张亮亮, 孙宝昌, 邹海魁, 罗勇, 初广文. 液-液非均相反应器研究进展[J]. 化工学报, 2024, 75(3): 727-742. |
[15] | 李文俊, 赵中阳, 倪震, 周灿, 郑成航, 高翔. 基于气-液传质强化的湿法烟气脱硫CFD模拟研究[J]. 化工学报, 2024, 75(2): 505-519. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 474
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||