化工学报 ›› 2024, Vol. 75 ›› Issue (11): 4005-4019.DOI: 10.11949/0438-1157.20240319
顾天宇(), 陈献富, 王思琪, 徐鹏, 邱鸣慧, 范益群(
)
收稿日期:
2024-03-21
修回日期:
2024-06-07
出版日期:
2024-11-25
发布日期:
2024-12-26
通讯作者:
范益群
作者简介:
顾天宇(1997—),男,博士研究生,849173759@qq.com
基金资助:
Tianyu GU(), Xianfu CHEN, Siqi WANG, Peng XU, Minghui QIU, Yiqun FAN(
)
Received:
2024-03-21
Revised:
2024-06-07
Online:
2024-11-25
Published:
2024-12-26
Contact:
Yiqun FAN
摘要:
杜仲是我国传统名贵药材,具有抗肿瘤、抗氧化、抗骨质疏松、消炎和调节血压等医疗保健作用,其中的绿原酸、黄酮等小分子具有较高的药用价值。然而,传统中药存在成分复杂、生产工艺落后的问题。膜分离技术具有分离效率高、能耗低、操作简单、无二次污染等特点,在中药的分离纯化中展现出良好的应用前景。杜仲是中国特有的药材,国际上对于膜分离杜仲有效成分研究较少,国内对其研究还处在起步阶段。本文分析了膜的分离机理,综述了膜在杜仲有效成分分离纯化中的应用进展,讨论了膜分离过程的影响因素,最后进一步指出膜技术用于中药有效成分分离纯化时在膜材料及膜污染等方面存在的问题,并对未来膜技术在低成本专用膜材料及系统开发和膜污染控制方面的研究进行了展望,以期为杜仲有效成分的高效利用提供参考。
中图分类号:
顾天宇, 陈献富, 王思琪, 徐鹏, 邱鸣慧, 范益群. 膜技术在杜仲有效成分分离纯化中的应用研究进展[J]. 化工学报, 2024, 75(11): 4005-4019.
Tianyu GU, Xianfu CHEN, Siqi WANG, Peng XU, Minghui QIU, Yiqun FAN. Application of membranes for separation and purification of Eucommiaulmoides active ingredients[J]. CIESC Journal, 2024, 75(11): 4005-4019.
成分名称 | 代表物质 | 中国药典的要求 | 功效 |
---|---|---|---|
木脂素类 | 松脂醇二葡萄糖苷 | 含量不得低于0.10% | 双向调节血压 |
苯丙素类 | 绿原酸 | 叶中含量不得低于0.080% | 杀菌、消炎、抗衰老等 |
环烯醚萜类 | 桃叶珊瑚苷 | — | 镇痛、抗菌消炎和利尿等 |
黄酮类 | 芦丁 | — | 抗氧化、抗病毒、抗炎、抗菌、降血脂等 |
表1 杜仲有效成分的功效
Table 1 Efficacy of some active pharmaceutical ingredients in Eu
成分名称 | 代表物质 | 中国药典的要求 | 功效 |
---|---|---|---|
木脂素类 | 松脂醇二葡萄糖苷 | 含量不得低于0.10% | 双向调节血压 |
苯丙素类 | 绿原酸 | 叶中含量不得低于0.080% | 杀菌、消炎、抗衰老等 |
环烯醚萜类 | 桃叶珊瑚苷 | — | 镇痛、抗菌消炎和利尿等 |
黄酮类 | 芦丁 | — | 抗氧化、抗病毒、抗炎、抗菌、降血脂等 |
成分名称 | 分子量/Da | 成分名称 | 分子量/Da |
---|---|---|---|
淀粉 | (50~500)×103 | 绿原酸 | 354 |
树脂、果胶 | (15~300)×103 | 黄酮类 | 300~600 |
蛋白质 | (5~500)×103 | 车业草苷 | 414 |
多糖 | (5~500)×103 | 松脂醇二葡萄糖苷 | 683 |
单糖、二糖 | 180~360 | 桃叶珊瑚苷 | 346 |
细菌 | (40~200)×103 | 京尼平苷酸 | 374 |
鞣酸 | 500~3000 | 氨基酸 | 75~210 |
表2 杜仲提取液体系有效成分和杂质的分子量
Table 2 Relative molecular mass of some active pharmaceutical ingredients and impurities in Eu extract
成分名称 | 分子量/Da | 成分名称 | 分子量/Da |
---|---|---|---|
淀粉 | (50~500)×103 | 绿原酸 | 354 |
树脂、果胶 | (15~300)×103 | 黄酮类 | 300~600 |
蛋白质 | (5~500)×103 | 车业草苷 | 414 |
多糖 | (5~500)×103 | 松脂醇二葡萄糖苷 | 683 |
单糖、二糖 | 180~360 | 桃叶珊瑚苷 | 346 |
细菌 | (40~200)×103 | 京尼平苷酸 | 374 |
鞣酸 | 500~3000 | 氨基酸 | 75~210 |
方法 | 优势 | 劣势 | 目标物 | 收率或含量 |
---|---|---|---|---|
浸提 | 提取率高、能耗低、成本低 | 提取周期长 | 绿原酸 杜仲胶 绿原酸 | 4.36 mg·g-1[ 4.42%[ 1.06%[ |
超声 | 提取时间短、效率高、温度低 | 受频率影响、处理量小 | 总黄酮 杜仲多糖 | 1.45%[ 4.02%±0.03%[ |
微波 | 加热均匀、效率高、环保 | 适用于热稳定性的物质 | 绿原酸 杜仲多糖 | 3.59%[ 12.31%[ |
超临界萃取 | 效率高而且能耗较少 | 萃取物中有夹带剂残留 | 杜仲翅果油 杜仲籽油 | 14.73%[ 28.75 g·(100 g)-1[ |
表3 杜仲有效成分不同提取方法的比较
Table 3 Comparison of different extraction methods for active ingredients of Eu
方法 | 优势 | 劣势 | 目标物 | 收率或含量 |
---|---|---|---|---|
浸提 | 提取率高、能耗低、成本低 | 提取周期长 | 绿原酸 杜仲胶 绿原酸 | 4.36 mg·g-1[ 4.42%[ 1.06%[ |
超声 | 提取时间短、效率高、温度低 | 受频率影响、处理量小 | 总黄酮 杜仲多糖 | 1.45%[ 4.02%±0.03%[ |
微波 | 加热均匀、效率高、环保 | 适用于热稳定性的物质 | 绿原酸 杜仲多糖 | 3.59%[ 12.31%[ |
超临界萃取 | 效率高而且能耗较少 | 萃取物中有夹带剂残留 | 杜仲翅果油 杜仲籽油 | 14.73%[ 28.75 g·(100 g)-1[ |
样品 | 质量分数/(mg·g-1) | |
---|---|---|
蛋白质 | 绿原酸 | |
G1 | 8.84 | 7.31 |
G2 | 5.17 | 7.99 |
G3 | 4.95 | 5.84 |
G4 | 0.85 | 8.88 |
表4 干燥固体的成分分析[79]
Table 4 Chemical compositions of dried solids[79]
样品 | 质量分数/(mg·g-1) | |
---|---|---|
蛋白质 | 绿原酸 | |
G1 | 8.84 | 7.31 |
G2 | 5.17 | 7.99 |
G3 | 4.95 | 5.84 |
G4 | 0.85 | 8.88 |
图6 不同孔径的PAA改性膜的表征及膜过滤BSA溶液和纯水洗涤过程中的归一化通量[93](1 bar=0.1 MPa)
Fig.6 Characterization of PAA-modified membrane with pore size & normalized flux of original and PAA-modified membranes in BSA solution filtration and pure water washing process[93]
图7 通过原膜、污染膜和清洁膜相对通量差异评估的化学清洗效率[95]
Fig.7 The efficiency of chemical cleaning assessed by the relative similarity in flux values of pristine, fouled, and cleaned membranes[95]
1 | 中华人民共和国国务院. 中医药发展战略规划纲要(2016—2030年)[R/OL]. (2012-02-26) [2024-03-21]. . |
The State Council of China. Outline of the strategic plan for the development of traditional Chinese medicine (2016—2030)[R/OL]. (2012-02-26) [2024-03-21]. . | |
2 | 中华人民共和国国务院. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[R/OL]. (2021-03-13) [2024-03-21]. . |
The State Council of China. Outline of the 14th five-year plan (2021—2025) for national economic and social development and vision 2035 of the People's Republic of China[R/OL]. (2021-03-13) [2024-03-21]. . | |
3 | Huang L C, Lyu Q, Zheng W Y, et al. Traditional application and modern pharmacological research of Eucommia ulmoides Oliv[J]. Chinese Medicine, 2021, 16(1): 73. |
4 | 钱文丹, 谭艾娟, 吕世明, 等. 杜仲中五环三萜类及其抗肿瘤活性[J]. 中成药, 2019, 41(5): 1059-1065. |
Qian W D, Tan A J, Lyu S M, et al. Pentacyclic triterpenoids from Eucommia ulmoides and their antitumor activities[J]. Chinese Traditional Patent Medicine, 2019, 41(5): 1059-1065. | |
5 | Wang X S, Wang Z H, Yang Q L, et al. Determining the in vitro anti-aging effect of the characteristic components from Eucommia ulmoides [J]. Journal of Renewable Materials, 2022, 10(12): 3131. |
6 | Wang T, Fan L M, Feng S, et al. Network pharmacology of iridoid glycosides from Eucommia ulmoides Oliver against osteoporosis[J]. Scientific Reports, 2022, 12: 7430. |
7 | Li R, Nie L L, Wang Q, et al. Phytochemical constituents, chemotaxonomic significance and anti-arthritic effect of Eucommia ulmoides Oliver staminate flowers[J]. Natural Product Research, 2022, 36(13): 3455. |
8 | Ishimitsu A, Tojo A, Satonaka H, et al. Eucommia ulmoides (Tochu) and its extract geniposidic acid reduced blood pressure and improved renal hemodynamics[J]. Biomedicine & Pharmacotherapy, 2021, 141: 111901. |
9 | Xi J F, Kan W J, Zhu Y, et al. Synthesis of silver nanoparticles using Eucommia ulmoides extract and their potential biological function in cosmetics[J]. Heliyon, 2022, 8(8): e10021. |
10 | Ren N, Gong W W, Zhao Y C, et al. Innovation in sweet rice wine with high antioxidant activity: Eucommia ulmoides leaf sweet rice wine[J]. Frontiers in Nutrition, 2023, 9: 1108843. |
11 | Peng M J, Huang T, Yang Q L, et al. Dietary supplementation Eucommia ulmoides extract at high content served as a feed additive in the hens industry[J]. Poultry Science, 2022, 101(3): 101650. |
12 | Zhu M Q, Sun R C. Eucommia ulmoides Oliver: a potential feedstock for bioactive products[J]. Journal of Agricultural and Food Chemistry, 2018, 66(22): 5433-5438. |
13 | Xing Y F, He D, Wang Y, et al. Chemical constituents, biological functions and pharmacological effects for comprehensive utilization of Eucommia ulmoides Oliver[J]. Food Science and Human Wellness, 2019, 8(2): 177-188. |
14 | Yan Y, Zhao H, Chen C H, et al. Comparison of multiple bioactive constituents in different parts of Eucommia ulmoides based on UFLC-QTRAP-MS/MS combined with PCA[J]. Molecules, 2018, 23(3): 643. |
15 | Jin W B, Zhou T, Li G K. Recent advances of modern sample preparation techniques for traditional Chinese medicines[J]. Journal of Chromatography. A, 2019, 1606: 460377. |
16 | Lee S H, Chung K C, Shin M C, et al. Preparation of ceramic membrane and application to the crossflow microfiltration of soluble waste oil[J]. Materials Letters, 2002, 52(4/5): 266. |
17 | 郭立玮, 朱华旭. 基于膜过程的中药制药分离技术: 基础与应用[M]. 北京: 科学出版社, 2019. |
Guo L W, Zhu H X. Chinese Medicine Pharmaceutical Separation Technology Based on Membrane Process[M]. Beijing: Science Press, 2019. | |
18 | Gong M, Su C F, Fan M Z, et al. Mechanism by which Eucommia ulmoides leaves regulate nonalcoholic fatty liver disease based on system pharmacology[J]. Journal of Ethnopharmacology, 2022, 282: 114603. |
19 | Huang Q, Zhang F Y, Liu S, et al. Systematic investigation of the pharmacological mechanism for renal protection by the leaves of Eucommia ulmoides Oliver using UPLC-Q-TOF/MS combined with network pharmacology analysis[J]. Biomedicine & Pharmacotherapy, 2021, 140: 111735. |
20 | Huang Q, Tan J B, Zeng X C, et al. Lignans and phenolic constituents from Eucommia ulmoides Oliver[J]. Natural Product Research, 2021, 35(20): 3376-3383. |
21 | Vanholme B, El Houari I, Boerjan W. Bioactivity: phenylpropanoids' best kept secret[J]. Current Opinion in Biotechnology, 2019, 56: 156-162. |
22 | Yu L, Cao L, Chang Y H, et al. Enhanced extraction performance of iridoids, phenolic acids from Eucommia ulmoides leaves by tailor-made ternary deep eutectic solvent[J]. Microchemical Journal, 2021, 161: 105788. |
23 | Saini R K, Ranjit A, Sharma K, et al. Bioactive compounds of citrus fruits: a review of composition and health benefits of carotenoids, flavonoids, limonoids, and terpenes[J]. Antioxidants, 2022, 11(2): 239. |
24 | 刘隆基, 夏建成, 周红玲, 等. 熄风活络胶囊醇提工艺优化[J]. 中成药, 2023, 45(6): 1964-1969. |
Liu L J, Xia J C, Zhou H L, et al. Optimization of alcohol extraction process for Xifeng Huoluo capsule[J]. Chinese Traditional Patent Medicine, 2023, 45(6): 1964-1969. | |
25 | da Silva R P F F, Rocha-Santos T A P, Duarte A C. Supercritical fluid extraction of bioactive compounds[J]. TrAC - Trends in Analytical Chemistry, 2016, 76: 40-51. |
26 | Essien S O, Young B, Baroutian S. Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials[J]. Trends in Food Science & Technology, 2020, 97: 156-169. |
27 | Umego E C, He R H, Ren W B, et al. Ultrasonic-assisted enzymolysis: principle and applications[J]. Process Biochemistry, 2021, 100: 59-68. |
28 | Jiang H, Li J, Zhang N, et al. Optimization of the extraction technology and assessment of antioxidant activity of chlorogenic acid-rich extracts from Eucommia ulmoides leaves[J]. Natural Product Communications, 2021, 16(10): 1934578X2110461. |
29 | 谢晓婷, 路博琼, 王自波, 等. 杜仲叶渣中杜仲胶提取工艺的研究[J]. 生物质化学工程, 2013, 47(5): 35-39. |
Xie X T, Lu B Q, Wang Z B, et al. Extraction technique of eucommia gum from residue of Eucommia ulmoides leaves[J]. Biomass Chemical Engineering, 2013, 47(5): 35-39. | |
30 | 王茜, 李智, 何琦, 等. 杜仲叶中绿原酸提取分离工艺条件的研究[J]. 离子交换与吸附, 2008, 24(1): 73-80. |
Wang Q, Li Z, He Q, et al. Study on technique of extraction and separation chlorogenic acid from leaves of Eucommia ulmoides [J]. Ion Exchange and Adsorption, 2008, 24(1): 73-80. | |
31 | Wu M F, Liu P Y, Wang S Y, et al. Ultrasonic microwave-assisted micelle combined with fungal pretreatment of Eucommia ulmoides leaves significantly improved the extraction efficiency of total flavonoids and gutta-percha[J]. Foods, 2021, 10(10): 2399. |
32 | 陈艳萍, 贺菊萍, 刘意, 等. 超声波-微波辅助提取杜仲叶多糖工艺优化及其体外抗凝血活性分析[J]. 食品工业科技, 2023, 44(17): 202-211. |
Chen Y P, He J P, Liu Y, et al. Optimization of ultrasonic-microwave assisted extraction of polysaccharides from Eucommia ulmoides leaves and its anticoagulant activity in vitro[J]. Science and Technology of Food Industry, 2023, 44(17): 202-211. | |
33 | Shao P, Zhang J F, Chen X X, et al. Microwave-assisted extraction and purification of chlorogenic acid from by-products of Eucommia Ulmoides Oliver and its potential anti-tumor activity[J]. Journal of Food Science and Technology, 2015, 52(8): 4925-4934. |
34 | Xu J K, Hou H J, Hu J P, et al. Optimized microwave extraction, characterization and antioxidant capacity of biological polysaccharides from Eucommia ulmoides Oliver leaf[J]. Scientific Reports, 2018, 8: 6561. |
35 | 刘秋玲, 崔丽, 陈栋, 等. 超临界CO2萃取杜仲翅果油研究[J]. 中国农学通报, 2016, 32(4): 108-112. |
Liu Q L, Cui L, Chen D, et al. Study on extraction process of eucommia samara oil with supercritical CO2 [J]. Chinese Agricultural Science Bulletin, 2016, 32(4): 108-112. | |
36 | Zhang Z S, Liu Y L, Che L M. Optimization of supercritical carbon dioxide extraction of Eucommia ulmoides seed oil and quality evaluation of the oil[J]. Journal of Oleo Science, 2018, 67(3): 255-263. |
37 | 王莹, 阿来·赛坎, 邢亚楠, 等. 杜仲叶中总黄酮与总多糖的含量分析[J]. 应用化工, 2016, 45(3): 550-552. |
Wang Y, Alai·Saikan, Xing Y N, et al. Analysis of content of total flavonoids and total polysaccharides in leaves of Eucommia Ulmoides Oliv[J]. Applied Chemical Industry, 2016, 45(3): 550-552. | |
38 | 尉芹, 王冬梅, 马希汉, 等. 杜仲叶总黄酮含量测定方法研究[J]. 西北农林科技大学学报(自然科学版), 2001, 29(5): 119-123. |
Yu Q, Wang D M, Ma X H, et al. A study on the measurement of flavonoids in the leaves of Eucommia ulmoides [J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 2001, 29(5): 119-123. | |
39 | Ding Y X, Dou D Q, Guo Y J, et al. Simultaneous quantification of eleven bioactive components of male flowers of Eucommia ulmoides Oliver by HPLC and their quality evaluation by chemical fingerprint analysis with hierarchical clustering analysis[J]. Pharmacognosy Magazine, 2014, 10(40): 435-440. |
40 | 曾梅, 王朝晖, 王志辉, 等. 基于HPLC指纹图谱及网络药理学的杜仲质量标志物预测分析[J]. 天然产物研究与开发, 2023, 35(8): 1283-1296. |
Zeng M, Wang Z H, Wang Z H, et al. Predictive analysis of Eucommia ulmoides quality markers based on HPLC fingerprint and network pharmacology[J]. Natural Product Research and Development, 2023, 35(8): 1283-1296. | |
41 | Tai Y N, Shen J C, Luo Y, et al. Research progress on the ethanol precipitation process of traditional Chinese medicine[J]. Chinese Medicine, 2020, 15: 84. |
42 | 王学军, 徐恒, 程敏, 等. 以壳聚糖为絮凝剂的杜仲叶水提液澄清工艺优化[J]. 国际药学研究杂志, 2018, 45(2): 150-153, 162. |
Wang X J, Xu H, Cheng M, et al. Optimization technology of the clarification process for the water-extracted solution of Folium eucommiae with chitosan flocculant[J]. Journal of International Pharmaceutical Research, 2018, 45(2): 150-153, 162. | |
43 | 夏循礼, 陈勇. 醇提水沉与水提醇沉提取杜仲叶活性成分的比较研究[J]. 湖北大学学报(自然科学版), 2003, 25(3): 267-270. |
Xia X L, Chen Y. Comparative study on extracting of the active components of Folium eucommiae by the methods of alcohol extracting-water precipitating and water extracting-alcohol precipitating[J]. Journal of Hubei University (Natural Science Edition), 2003, 25(3): 267-270 | |
44 | 孙明成. 药物分离纯化用柱层析硅胶应用与展望[C]//2020年全国无机硅化物行业协会年会暨行业高质量发展研讨会论文集. 德州, 2020: 179-183. |
Sun M C. Application and prospect of column chromatography silica gel for drug separation and purification[C]//2020 National Inorganic Silicide Industry Association Annual Meeting and Industry High-Quality Development Seminar. Dezhou, 2020: 179-183. | |
45 | 陈伟. 杜仲叶片绿原酸、总黄酮的提取分离纯化技术研究[D]. 南京: 南京农业大学, 2007. |
Chen W. Extraction, separation and purification techniques of chlorogenic acid and flavonoids in Chinese medicine Eucommia ulmoides Oliver[D]. Nanjing: Nanjing Agricultural University, 2007. | |
46 | Lefebvre T, Destandau E, Lesellier E. Selective extraction of bioactive compounds from plants using recent extraction techniques: a review[J]. Journal of Chromatography. A, 2021, 1635: 461770. |
47 | Wang W R, Liu F S, Dai G L, et al. Preparative separation of chlorogenic acid from Eucommia ulmoides extract via fractional extraction[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(8): 2139-2148. |
48 | Nunes S P, Culfaz-Emecen P Z, Ramon G Z, et al. Thinking the future of membranes: perspectives for advanced and new membrane materials and manufacturing processes[J]. Journal of Membrane Science, 2020, 598: 117761. |
49 | Anis S F, Hashaikeh R, Hilal N. Microfiltration membrane processes: a review of research trends over the past decade[J]. Journal of Water Process Engineering, 2019, 32: 100941. |
50 | Al Aani S, Mustafa T N, Hilal N. Ultrafiltration membranes for wastewater and water process engineering: a comprehensive statistical review over the past decade[J]. Journal of Water Process Engineering, 2020, 35: 101241. |
51 | Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: recent advances and future prospects[J]. Desalination, 2015, 356: 226-254. |
52 | Zhao Y Y, Tong T Z, Wang X M, et al. Differentiating solutes with precise nanofiltration for next generation environmental separations: a review[J]. Environmental Science & Technology, 2021, 55(3): 1359-1376. |
53 | Anis S F, Hashaikeh R, Hilal N. Reverse osmosis pretreatment technologies and future trends: a comprehensive review[J]. Desalination, 2019, 452: 159-195. |
54 | Shenvi S S, Isloor A M, Ismail A F. A review on RO membrane technology: developments and challenges[J]. Desalination, 2015, 368: 10-26. |
55 | Li C, Sun W J, Lu Z D, et al. Ceramic nanocomposite membranes and membrane fouling: a review[J]. Water Research, 2020, 175: 115674. |
56 | Liu H B, Li B, Guo L W, et al. Current and future use of membrane technology in the traditional Chinese medicine industry[J]. Separation & Purification Reviews, 2022, 51(4): 484-502. |
57 | 徐南平, 李卫星, 邢卫红. 陶瓷膜工程设计: 从工艺到微结构[J]. 膜科学与技术, 2006, 26(2): 1-5. |
Xu N P, Li W X, Xing W H. Engineering design of ceramic membrane: from process to membrane microstructure[J]. Membrane Science and Technology, 2006, 26(2): 1-5. | |
58 | 聂林峰, 黄佳云, 何成华, 等. 膜技术富集脉络宁注射液生产废水中小分子药效成分的工艺优化研究[J]. 中草药, 2019, 50(8): 1804-1810, 1817. |
Nie L F, Huang J Y, He C H, et al. Membrane technology for optimizing process optimization of small bioactive compounds in Mailuoning Injection factory effluene[J]. Chinese Traditional and Herbal Drugs, 2019, 50(8): 1804-1810, 1817. | |
59 | Lee H D, Lee M Y, Hwang Y S, et al. Separation and purification of lactic acid from fermentation broth using membrane-integrated separation processes[J]. Industrial & Engineering Chemistry Research, 2017, 56(29): 8301-8310. |
60 | 黄莎莎, 赵文静, 张悦, 等. 中药酚酸类成分在PES膜分离过程中的透过机制研究[J]. 中国中药杂志, 2020, 45(1): 106-112. |
Huang S S, Zhao W J, Zhang Y, et al. Permeation mechanism of phenolic acid components from traditional Chinese medicine on PES membrane separation process[J]. China Journal of Chinese Materia Medica, 2020, 45(1): 106-112. | |
61 | Naik N S, Sherugar P, Vishnumurthy K A, et al. Polycarbene-bearing membrane surface containing silver species for size and charge selective molecular separation[J]. Environmental Science: Water Research & Technology, 2022, 8(10): 2381-2397. |
62 | Bottino A, Capannelli G, Petit-bon P, et al. Pore size and pore-size distribution in microfiltration membranes[J]. Separation Science and Technology, 1991, 26(10/11): 1315-1327. |
63 | Ellouze F, Ben Amar N, Deratani A. Étude comparative de deux méthodes de caractérisation de membranes d'ultrafiltration et de nanofiltration: la porométrie bi-liquide et le transport de solutés neutres[J]. Comptes Rendus Chimie, 2015, 18(5): 482-491. |
64 | 彭小文. 膜分离集成树脂技术制取杜仲绿原酸的工艺研究[D]. 武汉: 湖北工业大学, 2010. |
Peng X W. Study on technology of preparing chlorogenic acid in eucommia leaf by membrane coupled resin equipment[D]. Wuhan: Hubei University of Technology, 2010. | |
65 | 杨祖金, 江燕斌, 葛发欢, 等. 超滤膜技术分离杜仲叶绿原酸的研究[J]. 中药材, 2008, 31(4): 585-588. |
Yang Z J, Jiang Y B, Ge F H, et al. Study on isolation of chlorogenic acid from Eucommia ulmoides leaves by ultrafiltration technique[J]. Journal of Chinese Medicinal Materials, 2008, 31(4): 585-588. | |
66 | 王思琪, 顾天宇, 陈献富, 等. 陶瓷膜用于杜仲叶提取液澄清的分离特性与膜污染机制研究[J]. 化工学报, 2023, 74(3): 1113-1125. |
Wang S Q, Gu T Y, Chen X F, et al. Study on separation characteristics and membrane fouling mechanism of ceramic membrane for clarification of Eucommia ulmoides leaves extract[J]. CIESC Journal, 2023, 74(3): 1113-1125. | |
67 | Li D K, Li Z, Peng F, et al. Ultrafiltration process yield study on aqueous solution of total ginsenosides[J]. Natural Product Communications, 2022, 17(5): 1934578X2210941. |
68 | Zhang X L, Ying R X, Chen X R, et al. A novel membrane-based integrated process for baicalin recovery from TCM Pudilan wastewater[J]. Journal of Water Process Engineering, 2023, 53: 103868. |
69 | Qi T, Chen X F, Shi W D, et al. Fouling behavior of nanoporous ceramic membranes in the filtration of oligosaccharides at different temperatures[J]. Separation and Purification Technology, 2021, 278: 119589. |
70 | Wen J J, Tian Y, Zhuang Y B, et al. Anti-fouling tight ultrafiltration membrane for gastrodin purification[J]. Journal of Food Engineering, 2023, 357: 111611. |
71 | Siddiqui M U, Arif A F M, Bashmal S. Permeability-selectivity analysis of microfiltration and ultrafiltration membranes: effect of pore size and shape distribution and membrane stretching[J]. Membranes, 2016, 6(3): 40. |
72 | Liu L L, Chen X R, Feng S C, et al. Enhancing the antifouling ability of a polyamide nanofiltration membrane by narrowing the pore size distribution via one-step multiple interfacial polymerization[J]. ACS Applied Materials & Interfaces, 2022, 14(31): 36132-36142. |
73 | Zhu M H, Yun Y B, Xiang W Y. Purification of Ginkgo biloba flavonoids by UF membrane technology[J]. Desalination and Water Treatment, 2013, 51(19/20/21): 3847-3853. |
74 | Han R L, Zeng J H, Han L, et al. Application of integrated membrane technology in purification of chlorogenic acid[J]. Desalination and Water Treatment, 2015, 55(8): 2165-2170. |
75 | Sohrabi M R, Madaeni S S, Khosravi M, et al. Concentration of licorice aqueous solutions using nanofiltration and reverse osmosis membranes[J]. Separation and Purification Technology, 2010, 75(2): 121-126. |
76 | Cai M, Xie C F, Lv Y Q, et al. Changes in physicochemical profiles and quality of apple juice treated by ultrafiltration and during its storage[J]. Food Science & Nutrition, 2020, 8(6): 2913-2919. |
77 | Ivić I, Kopjar M, Jakobek L, et al. Influence of processing parameters on phenolic compounds and color of cabernet sauvignon red wine concentrates obtained by reverse osmosis and nanofiltration[J]. Processes, 2021, 9(1): 89. |
78 | Panigrahi C, Mondal M, Karmakar S, et al. Shelf life extension of sugarcane juice by cross flow hollow fibre ultrafiltration[J]. Journal of Food Engineering, 2020, 274: 109880. |
79 | 钟文蔚, 郑东阳, 邹洪荟, 等. 基于中药液、固体物料指标成分含量相关性的膜工艺评估方法创新研究: 以杜仲叶水提液为例[J]. 中草药, 2021, 52(11): 3234-3238. |
Zhong W W, Zheng D Y, Zou H H, et al. A novel approach for evaluating the concentrations of indicative components in liquid and solid in the pharmaceutical process of TCM manufacturing using membrane based clarification—example given in the water extracts of Folium eucommiae [J]. Chinese Traditional and Herbal Drugs, 2021, 52(11): 3234-3238. | |
80 | 谢玲. 杜仲抗氧化功能成分的提取及分离纯化研究[D]. 贵阳: 贵州大学, 2021. |
Xie L. Study on extraction, separation and purification of antioxidant functional components from Eucommia ulmoides Oliv[D]. Guiyang: Guizhou University, 2021. | |
81 | 陈献富, 代朝文, 范益群, 等. 一种杜仲的膜分离提取绿原酸和黄酮的方法: 114409542A[P]. 2022-04-29. |
Chen X F, Dai C W, Fan Y Q, et al. Method for extracting chlorogenic acid and flavone from Eucommia ulmoides through membrane separation: 114409542A[P]. 2022-04-29. | |
82 | 柯威, 李佳, 王通, 等. 一种杜仲叶提取液中天然产物的提取方法: 116284176A[P]. 2023-06-23. |
Ke W, Li J, Wang T, et al. Method for extracting natural products from folium cortex eucommiae extracting solution: 116284176A[P]. 2023-06-23. | |
83 | Chew J W, Kilduff J, Belfort G. The behavior of suspensions and macromolecular solutions in crossflow microfiltration: an update[J]. Journal of Membrane Science, 2020, 601: 117865. |
84 | Lay H T, Yeow R J E, Ma Y Q, et al. Internal membrane fouling by proteins during microfiltration[J]. Journal of Membrane Science, 2021, 637: 119589. |
85 | Ma C Y, Yi C, Li F, et al. Mitigation of membrane fouling using an electroactive polyether sulfone membrane[J]. Membranes, 2020, 10(2): 21. |
86 | Liu H B, Tao X B, Zhu H X, et al. Effect of operation mode on membrane fouling from traditional Chinese medicine water extracts[J]. Journal of Water Process Engineering, 2022, 48: 102943. |
87 | Zhang Y, Huang M C, Wang Q S, et al. Insights into the penetration of PhACs in TCM during ultrafiltration: effects of fouling mechanisms and intermolecular interactions[J]. Separation and Purification Technology, 2022, 295: 121205. |
88 | Liu H B, Tang Z S, Cui C L, et al. Fouling mechanisms of the extract of traditional Chinese medicine in ultrafiltration[J]. Desalination, 2014, 354: 87-96. |
89 | Avram A M, Morin P, Brownmiller C, et al. Concentrations of polyphenols from blueberry pomace extract using nanofiltration[J]. Food and Bioproducts Processing, 2017, 106: 91-101. |
90 | Liu W K, Yang K H, Qu F S, et al. A moderate activated sulfite pre-oxidation on ultrafiltration treatment of algae-laden water: fouling mitigation, organic rejection, cell integrity and cake layer property[J]. Separation and Purification Technology, 2022, 282: 120102. |
91 | Yun K H, Sharma K, Kim H U, et al. Modification of a PES microfiltration membrane to enhance sterile filtration by inhibiting protein adsorption[J]. Journal of Industrial and Engineering Chemistry, 2023, 123: 311-319. |
92 | Lu D R, Liu H B, Tang Z S, et al. Anti-pectin fouling performance of dopamine and (3-aminopropy) triethoxysilane-coated PVDF ultrafiltration membrane[J]. Membranes, 2022, 12(8): 740-755. |
93 | Ye Y H, Han Q, Zhao C Y, et al. Improved negative charge of tight ceramic ultrafiltration membranes for protein-resistant and easy-cleaning performance[J]. Separation and Purification Technology, 2023, 309: 123082. |
94 | 付振生, 金江. 陶瓷膜分离提纯绿原酸提取液的膜清洗研究[J]. 水处理技术, 2010, 36(5): 111-114. |
Fu Z S, Jin J. Recovering of ceramic membrane used for the chlorogenic acid extracts[J]. Technology of Water Treatment, 2010, 36(5): 111-114. | |
95 | Arkhangelsky E, Bazarbayeva A, Kamal A, et al. Tangential streaming potential, transmembrane flux, and chemical cleaning of ultrafiltration membranes[J]. Separation and Purification Technology, 2021, 258: 118045. |
[1] | 陈森洋, 靳蒲航, 谭志明, 谢公南. 质子交换膜燃料电池中蛇形流道液滴运动数值仿真研究[J]. 化工学报, 2024, 75(S1): 183-194. |
[2] | 李匡奚, 于佩潜, 王江云, 魏浩然, 郑志刚, 冯留海. 微气泡旋流气浮装置内流动分析与结构优化[J]. 化工学报, 2024, 75(S1): 223-234. |
[3] | 谢慧慧, 姜佳鑫, 王鑫, 李正, 郭鑫, 吕欣然, 王凌云, 刘杨. 深共晶溶剂聚合物包覆膜传输分离铂、钯的研究[J]. 化工学报, 2024, 75(S1): 235-243. |
[4] | 邱知, 谭明. 聚离子液体膜的制备及其在低钠高钾健康酱油中的应用[J]. 化工学报, 2024, 75(S1): 244-250. |
[5] | 刘律, 刘洁茹, 范亮亮, 赵亮. 基于层流效应的被动式颗粒分离微流控方法研究[J]. 化工学报, 2024, 75(S1): 67-75. |
[6] | 张丽萍, 孟晓荣, 宋锦峰, 杜金晶. VO2@KH550/570@PS复合薄膜的制备及其热致相变性能[J]. 化工学报, 2024, 75(9): 3348-3359. |
[7] | 唐昊, 胡定华, 李强, 张轩畅, 韩俊杰. 抗加速度双切线弧流道内气泡动力学行为数值与可视化研究[J]. 化工学报, 2024, 75(9): 3074-3082. |
[8] | 陈引, 赵霄, 杜王芳, 杨竹强, 李凯, 赵建福. 喷雾冷却液膜流动特性测试方案优化及传热规律分析[J]. 化工学报, 2024, 75(8): 2734-2743. |
[9] | 王皓宇, 杨杨, 荆文婕, 杨斌, 唐雨, 刘毅. 不同旋流器作用下气液螺旋环状流动特性研究[J]. 化工学报, 2024, 75(8): 2744-2755. |
[10] | 王倩倩, 李冰, 郑伟波, 崔国民, 赵兵涛, 明平文. 氢燃料电池局部动态特征三维模型[J]. 化工学报, 2024, 75(8): 2812-2820. |
[11] | 李彦熹, 王晔春, 谢向东, 王进芝, 王江, 周煜, 潘盈秀, 丁文涛, 郭烈锦. 蜗壳式多通道气液旋流分离器结构优化及分离特性研究[J]. 化工学报, 2024, 75(8): 2875-2885. |
[12] | 罗小平, 侯云天, 范一杰. 逆流相分离结构微细通道流动沸腾传热与均温性[J]. 化工学报, 2024, 75(7): 2474-2485. |
[13] | 张颂红, 赵欣怡, 楼小玲, 沈绍传, 贠军贤. 阳离子交换纳晶胶分离乳过氧化物酶的研究[J]. 化工学报, 2024, 75(7): 2574-2582. |
[14] | 白炳林, 杜燊, 李明佳, 张传琪. 基于水相剥离的单壁碳纳米管薄膜透光和导电特性[J]. 化工学报, 2024, 75(7): 2680-2687. |
[15] | 秦晓巧, 谭宏博, 温娜. 储能式低温空分系统热力学与经济性分析[J]. 化工学报, 2024, 75(7): 2409-2421. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 51
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 129
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||