1 |
Jähnisch K, Hessel V, Löwe H, et al. Chemistry in microstructured reactors[J]. Angewandte Chemie (International Ed. in English), 2004, 43(4): 406-446.
|
2 |
Jas G, Kirschning A. Continuous flow techniques in organic synthesis[J]. Chemistry-A European Journal, 2003, 9(23): 5708-5723.
|
3 |
Malet-Sanz L, Susanne F. Continuous flow synthesis. A pharma perspective[J]. Journal of Medicinal Chemistry, 2012, 55(9): 4062-4098.
|
4 |
Hughes D L. Applications of flow chemistry in drug development: highlights of recent patent literature [J]. Organic Process Research & Development, 2018, 22(1): 13-20.
|
5 |
Stueckler C, Hermsen P, Ritzen B, et al. Development of a continuous flow process for a matteson reaction: from lab scale to full-scale production of a pharmaceutical intermediate [J]. Organic Process Research & Development, 2019, 23(5): 1069-1077.
|
6 |
Zong J, Yue J. Continuous solid particle flow in microreactors for efficient chemical conversion[J]. Industrial & Engineering Chemistry Research, 2022, 61(19): 6269-6291.
|
7 |
Henry C, Minier J P, Lefèvre G. Towards a description of particulate fouling: from single particle deposition to clogging [J]. Advances in Colloid and Interface Science, 2012, 185/186: 34-76.
|
8 |
Liedtke A K, Bornette F, Philippe R, et al. Gas-liquid-solid "slurry taylor" flow: experimental evaluation through the catalytic hydrogenation of 3-methyl-1-pentyn-3-ol[J]. Chemical Engineering Journal, 2013, 227: 174-181.
|
9 |
Zhao S N, Yao C Q, Dong Z Y, et al. Role of ultrasonic oscillation in chemical processes in microreactors: a mesoscale issue[J]. Particuology, 2020, 48: 88-99.
|
10 |
Bannock J H, Krishnadasan S H, Nightingale A M, et al. Continuous synthesis of device-grade semiconducting polymers in droplet-based microreactors[J]. Advanced Functional Materials, 2013, 23(17): 2123-2129.
|
11 |
Noël T, Naber J R, Hartman R L, et al. Palladium-catalyzed amination reactions in flow: overcoming the challenges of clogging via acoustic irradiation[J]. Chemical Science, 2011, 2(2): 287-290.
|
12 |
Hartman R L, Naber J R, Zaborenko N, et al. Overcoming the challenges of solid bridging and constriction during Pd-catalyzed C—N bond formation in microreactors [J]. Organic Process Research & Development, 2010, 14(6): 1347-1357.
|
13 |
Khan S A, Günther A, Schmidt M A, et al. Microfluidic synthesis of colloidal silica [J]. Langmuir, 2004, 20(20): 8604-8611.
|
14 |
Khan S A, Jensen K F. Microfluidic synthesis of titania shells on colloidal silica [J]. Advanced Materials, 2007, 19(18): 2556-2560.
|
15 |
董正亚, 陈光文, 赵帅南, 等. 声化学微反应器——超声和微反应器协同强化[J]. 化工学报, 2018, 69(1): 102-115.
|
|
Dong Z Y, Chen G W, Zhao S N, et al. Sonochemical microreactor-synergistic intensification of ultrasound and microreactor[J]. CIESC Journal, 2018, 69(1): 102-115.
|
16 |
Mo Y M, Jensen K F. A miniature CSTR cascade for continuous flow of reactions containing solids[J]. Reaction Chemistry & Engineering, 2016, 1(5): 501-507.
|
17 |
Pomberger A, Mo Y M, Nandiwale K Y, et al. A continuous stirred-tank reactor (CSTR) cascade for handling solid-containing photochemical reactions[J]. Organic Process Research & Development, 2019, 23(12): 2699-2706.
|
18 |
Hopley A, Doyle B J, Roberge D M, et al. Residence time distribution in coil and plate micro-reactors[J]. Chemical Engineering Science, 2019, 207: 181-193.
|
19 |
陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4): 427-439.
|
|
Chen G W, Yuan Q. Micro-chemical technology[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(4): 427-439.
|
20 |
Othman R, Vladisavljević G T, Hemaka Bandulasena H C, et al. Production of polymeric nanoparticles by micromixing in a co-flow microfluidic glass capillary device[J]. Chemical Engineering Journal, 2015, 280: 316-329.
|
21 |
Xu C, Zhong Y J, Zheng Y N, et al. Micromixing-assisted preparation of TiO2 films from ammonium hexafluorotitanate and urea by liquid phase deposition based on simulation of mixing process in T-shaped micromixer[J]. Ceramics International, 2019, 45(9): 11325-11334.
|
22 |
Chang Y J, Mugdur P, Han S Y, et al. Nanocrystalline CdS MISFETs fabricated by a novel continuous flow microreactor [J]. Electrochemical and Solid State Letters, 2006, 9(5): 174.
|
23 |
Lobasov A S, Minakov A V, Kuznetsov V V, et al. Investigation of mixing efficiency and pressure drop in T-shaped micromixers [J]. Chemical Engineering and Processing-Process Intensification, 2018, 134: 105-114.
|
24 |
骆广生, 徐建鸿, 陈桂光, 等. 微结构设备内液-液均相混合性能研究进展[J]. 现代化工, 2005, 25(11): 19-23.
|
|
Luo G S, Xu J H, Chen G G, et al. Advances in research of liquid-liquid homogeneous mixing performance in micro-structured devices[J]. Modern Chemical Industry, 2005, 25(11): 19-23.
|
25 |
Rahimi M, Aghel B, Hatamifar B, et al. CFD modeling of mixing intensification assisted with ultrasound wave in a T-type microreactor [J]. Chemical Engineering and Processing: Process Intensification, 2014, 86: 36-46.
|
26 |
Fournier M C, Falk L, Villermaux J. A new parallel competing reaction system for assessing micromixing efficiency—experimental approach[J]. Chemical Engineering Science, 1996, 51(22): 5053-5064.
|
27 |
Fournier M C, Falk L, Villermaux J. A new parallel competing reaction system for assessing micromixing efficiency—determination of micromixing time by a simple mixing model[J]. Chemical Engineering Science, 1996, 51(23): 5187-5192.
|
28 |
Reis M H, Varner T P, Leibfarth F A. The influence of residence time distribution on continuous-flow polymerization[J]. Macromolecules, 2019, 52(9): 3551-3557.
|
29 |
Wong S H, Ward M C L, Wharton C W. Micro T-mixer as a rapid mixing micromixer[J]. Sensors and Actuators B: Chemical, 2004, 100(3): 359-379.
|
30 |
Hoffmann M, Schlüter M, Räbiger N. Experimental investigation of liquid-liquid mixing in T-shaped micro-mixers using μ-LIF and μ-PIV[J]. Chemical Engineering Science, 2006, 61(9): 2968-2976.
|