化工学报

• •    

微反应器内牛顿/非牛顿流体液-液两相流流动和传质研究

张德旺1,2(), 赵乾坤1, 郭笑妮1, 尧超群1(), 陈光文1()   

  1. 1.中国科学院大连化学物理研究所,辽宁 大连 116023
    2.中国石油大学(华东)化学化工学院,山东 青岛 266555
  • 收稿日期:2024-05-28 修回日期:2024-06-17 出版日期:2024-07-08
  • 通讯作者: 尧超群,陈光文
  • 作者简介:张德旺(2000—),男,硕士研究生,dwangzhang@dicp.ac.cn
  • 基金资助:
    国家自然科学基金项目(22278391)

Flow and mass transfer characteristics of Newtonian/ non-Newtonian liquid-liquid flow in a microreactor

Dewang ZHANG1,2(), Qiankun ZHAO1, Xiaoni GUO1, Chaoqun YAO1(), Guangwen CHEN1()   

  1. 1.Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    2.School of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, Shandong, China
  • Received:2024-05-28 Revised:2024-06-17 Online:2024-07-08
  • Contact: Chaoqun YAO, Guangwen CHEN

摘要:

利用传质在线表征技术研究了微通道内聚丙烯酰胺(PAAm)溶液为分散相的牛顿/非牛顿流体液-液两相流传质过程。首先探讨了两相流型,发现了一种独特的串状弹状流,并考察了PAAm浓度对弹状流、串状弹状流和环形流流型分布的影响。研究发现牛顿流体和非牛顿流体液滴内的传质均受对流和扩散共同主导,但非牛顿流体的剪切变稀特性使液滴内的涡流和浓度分布发生显著改变。弹状液滴内的对流传质与流速、液滴长度和毛细管数相关。基于渗透理论,提出关联流量比和毛细管数的无量纲项以量化对流的影响,很好的预测了弹状流传质系数。

关键词: 多相流, 传质, 非牛顿流体, 过程强化, 微流控

Abstract:

This work investigates the flow and mass transfer characteristics of Newtonian/ non-Newtonian liquid-liquid flow in a microreactor, with PAAm solution as the non-Newtonian dispersed phase. The flow patterns were analyzed first. A unique sussage slug flow was observed and the effects of PAAm concentration on the flow patterns (slug flow, sussage slug flow and annular flow) were investigated. The research reveals that the mass transfer in both the Newtonian and non-Newtonian slug droplets was dominated by the convection and diffusion. However, the shear-thinning characteristics of the non-Newtonian fluid lead to significant change in the vortices and concentration distribution. The convection inside the slug droplets was affected by the flow rate, droplet length and capillary number. Based on the penetration theory, a modified correlation by relating the flow rate ratio and capillary number was proposed, which shows excellent prediction performance.

Key words: multiphase flow, mass transfer, non-Newtonian fluid, process intensification, microfluidics

中图分类号: