17 |
Jia H W, Zhang P. Mass transfer of a rising spherical bubble in the contaminated solution with chemical reaction and volume change[J]. International Journal of Heat and Mass Transfer, 2017, 110: 43-57.
|
18 |
Saboni A, Alexandrova S, Karsheva M, et al. Mass transfer from a contaminated fluid sphere[J]. AIChE Journal, 2011, 57(7): 1684-1692.
|
19 |
Takemura F, Yabe A. Rising speed and dissolution rate of a carbon dioxide bubble in slightly contaminated water[J]. Journal of Fluid Mechanics, 1999, 378: 319-334.
|
20 |
Luo Y, Wang Z C, Zhang B, et al. Experimental study of the effect of the surfactant on the single bubble rising in stagnant surfactant solutions and a mathematical model for the bubble motion[J]. Industrial & Engineering Chemistry Research, 2022, 61(26): 9514-9527.
|
21 |
Hori Y, Hirota Y, Hayashi K, et al. Combined effects of alcohol and electrolyte on mass transfer from single carbon-dioxide bubbles in vertical pipes[J]. International Journal of Heat and Mass Transfer, 2019, 136: 521-530.
|
22 |
Dean J A. Lange’s handbook of chemistry[J]. Materials and Manufacturing Processes, 1990, 5(4): 687-688.
|
23 |
Hosoda S, Abe S, Hosokawa S, et al. Mass transfer from a bubble in a vertical pipe[J]. International Journal of Heat and Mass Transfer, 2014, 69: 215-222.
|
24 |
Kestin J, Sokolov M, Wakeham W A. Viscosity of liquid water in the range -8℃ to 150℃[J]. Journal of Physical and Chemical Reference Data, 1978, 7(3): 941-948.
|
25 |
Himmelblau D M. Diffusion of dissolved gases in liquids[J]. Chemical Reviews, 1964, 64(5): 527-550.
|
26 |
Li C X, Cui Y Z, Shi X G, et al. Numerical simulation on the terminal rise velocity and mass transfer rate of single sub-millimeter bubbles[J]. Chemical Engineering Science, 2021, 246: 116963.
|
27 |
Nock W J, Heaven S, Banks C J. Mass transfer and gas-liquid interface properties of single CO2 bubbles rising in tap water[J]. Chemical Engineering Science, 2016, 140: 171-178.
|
28 |
Vasconcelos J M T, Orvalho S P, Alves S S. Gas-liquid mass transfer to single bubbles: effect of surface contamination[J]. AIChE Journal, 2002, 48(6): 1145-1154.
|
29 |
Alves S S, Orvalho S P, Vasconcelos J M T. Effect of bubble contamination on rise velocity and mass transfer[J]. Chemical Engineering Science, 2005, 60(1): 1-9.
|
1 |
Tomás R A F, Bordado J C M, Gomes J F P. p-Xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development[J]. Chemical Reviews, 2013, 113(10): 7421-7469.
|
2 |
Schwab F, Lucas M, Claus P. Ruthenium-catalyzed selective hydrogenation of benzene to cyclohexene in the presence of an ionic liquid[J]. Angewandte Chemie (International Ed. in English), 2011, 50(44): 10453-10456.
|
3 |
Lucas T, Grenier D, Bornert M, et al. Bubble growth and collapse in pre-fermented doughs during freezing, thawing and final proving[J]. Food Research International, 2010, 43(4): 1041-1048.
|
4 |
Kalaga D V, Ansari M, Turney D E, et al. Scale-up of a downflow bubble column: experimental investigations[J]. Chemical Engineering Journal, 2020, 386: 121447.
|
5 |
Parkinson L, Sedev R, Fornasiero D, et al. The terminal rise velocity of 10—100 μm diameter bubbles in water[J]. Journal of Colloid and Interface Science, 2008, 322(1): 168-172.
|
6 |
Tanaka S, Kastens S, Fujioka S, et al. Mass transfer from freely rising microbubbles in aqueous solutions of surfactant or salt[J]. Chemical Engineering Journal, 2020, 387: 121246.
|
7 |
Cuenot B, Magnaudet J, Spennato B. The effects of slightly soluble surfactants on the flow around a spherical bubble[J]. Journal of Fluid Mechanics, 1997, 339(1): 25-53.
|
8 |
Takemura F. Adsorption of surfactants onto the surface of a spherical rising bubble and its effect on the terminal velocity of the bubble[J]. Physics of Fluids, 2005, 17(4): 048104.
|
9 |
Schiller L, Nauman A. Uber die grundlegende berechnung bei der schwekraftaufbereitung[J]. Ver. Deutch Ing., 1933, 44: 318-320.
|
10 |
Tomiyama A. Struggle with computational bubble dynamics[J]. Multiphase Science and Technology, 1998, 10(4): 369-405.
|
11 |
Mei R W, Klausner J F, Lawrence C J. A note on the history force on a spherical bubble at finite Reynolds number[J]. Physics of Fluids, 1994, 6(1): 418-420.
|
12 |
Higbie R. The rate of absorption of a pure gas into a still liquids during a short time of exposure[J]. Trans. Am. Inst. Chem. Eng., 1935, 31: 365-389.
|
13 |
Frössling N. Über die verdunstung fallender tropfen (on the evaporation of falling drops)[J]. Gerlands Beiträge Geophys, 1938, 52(1): 170-215.
|
14 |
Griffith R M. Mass transfer from drops and bubbles[J]. Chemical Engineering Science, 1960, 12(3): 198-213.
|
15 |
Zhang B, Wang Z C, Luo Y, et al. A mathematical model for single CO2 bubble motion with mass transfer and surfactant adsorption/desorption in stagnant surfactant solutions[J]. Separation and Purification Technology, 2023, 308: 122888.
|
16 |
Zheng L Y, Zhang B, Luo Y, et al. Mass transfer dynamics of single CO2 bubbles rising in monoethanolamine solutions: experimental study and mathematical model[J]. Chemical Engineering Journal, 2023, 465: 142761.
|
30 |
Jimenez M, Dietrich N, Grace J R, et al. Oxygen mass transfer and hydrodynamic behaviour in wastewater: determination of local impact of surfactants by visualization techniques[J]. Water Research, 2014, 58: 111-121.
|
31 |
Lebrun G, Benaissa S, Le Men C, et al. Effect of surfactant lengths on gas-liquid oxygen mass transfer from a single rising bubble[J]. Chemical Engineering Science, 2022, 247: 117102.
|
32 |
Koide K, Hayashi T, Sumino K, et al. Mass transfer from single bubbles in aqueous solutions of surfactants[J]. Chemical Engineering Science, 1976, 31(10): 963-967.
|
33 |
Aoki J, Hori Y, Hayashi K, et al. Mass transfer from single carbon dioxide bubbles in alcohol aqueous solutions in vertical pipes[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1991-2001.
|