化工学报 ›› 2024, Vol. 75 ›› Issue (11): 4152-4161.DOI: 10.11949/0438-1157.20240632
付敏(), 陈子健, 汤帅, 钱锡亮, 危增曦, 邹昀(
), 童张法(
)
收稿日期:
2024-06-07
修回日期:
2024-09-02
出版日期:
2024-11-25
发布日期:
2024-12-26
通讯作者:
邹昀,童张法
作者简介:
付敏(2000—),女,硕士研究生,2114302011@st.gxu.edu.cn
基金资助:
Min FU(), Zijian CHEN, Shuai TANG, Xiliang QIAN, Zengxi WEI, Yun ZOU(
), Zhangfa TONG(
)
Received:
2024-06-07
Revised:
2024-09-02
Online:
2024-11-25
Published:
2024-12-26
Contact:
Yun ZOU, Zhangfa TONG
摘要:
无机粒子掺杂聚乙烯醇(PVA)改性膜材料在渗透汽化酯化体系脱水方面展现出良好工业应用前景,但还缺乏微观层面的机理探究和基础理论数据。采用分子模拟手段构建了ZSM-5和ZIF-67两种粒子分别与PVA混合后的杂化材料分子结构模型,得到了无机粒子在PVA链段间的分布情况;利用Monte Carlo(MC)方法模拟了乙酸乙酯、水在PVA杂化材料中的吸附行为,考察了掺杂比例和温度对吸附量、吸附等温线的影响;利用分子动力学(MD)方法模拟了乙酸乙酯、水在杂化材料中的扩散行为,计算了杂化材料内部的自由体积分数(FFV),考察了掺杂比例和温度对小分子在杂化材料中扩散系数的影响。结果表明,两种杂化材料对水的吸附量显著高于酯,且ZSM-5/PVA材料对水的吸附量高于ZIF-67/PVA材料;水在两种杂化材料中的扩散系数大于乙酸乙酯,且由于ZSM-5/PVA材料具有更大的FFV,小分子在ZSM-5/PVA中的扩散系数远大于在ZIF-67/PVA中的扩散系数。本研究为PVA材料改性及传质分离提供了理论指导。
中图分类号:
付敏, 陈子健, 汤帅, 钱锡亮, 危增曦, 邹昀, 童张法. PVA杂化膜中小分子吸附和扩散行为的分子模拟[J]. 化工学报, 2024, 75(11): 4152-4161.
Min FU, Zijian CHEN, Shuai TANG, Xiliang QIAN, Zengxi WEI, Yun ZOU, Zhangfa TONG. Molecular simulation of small molecule adsorption and diffusion behavior in PVA hybrid membranes[J]. CIESC Journal, 2024, 75(11): 4152-4161.
项目 | ZSM-5/PVA | ZIF-67/PVA | ||||||
---|---|---|---|---|---|---|---|---|
0%ZSM-5/PVA | 3%ZSM-5/PVA | 6%ZSM-5/PVA | 9%ZSM-5/PVA | 0%ZIF-67/PVA | 3%ZIF-67/PVA | 6%ZIF-67/PVA | 9%ZIF-67/PVA | |
PVA链段数 | 150 | 150 | 150 | 150 | 50 | 50 | 50 | 50 |
无机粒子个数 | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 |
表1 用于吸附模拟的不同杂化比例的无机粒子/PVA体系
Table 1 Inorganic particle/PVA system with different hybridization ratios for adsorption simulation
项目 | ZSM-5/PVA | ZIF-67/PVA | ||||||
---|---|---|---|---|---|---|---|---|
0%ZSM-5/PVA | 3%ZSM-5/PVA | 6%ZSM-5/PVA | 9%ZSM-5/PVA | 0%ZIF-67/PVA | 3%ZIF-67/PVA | 6%ZIF-67/PVA | 9%ZIF-67/PVA | |
PVA链段数 | 150 | 150 | 150 | 150 | 50 | 50 | 50 | 50 |
无机粒子个数 | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 |
无机粒子掺杂比例/%(质量) | FFV/% | |
---|---|---|
ZSM-5/PVA | ZIF-67/PVA | |
0 | 15.21 | 25.44 |
3 | 35.46 | 27.13 |
6 | 35.76 | 30.34 |
9 | 16.80 | 28.43 |
表2 ZSM-5/PVA以及ZIF-67/PVA中的自由体积分数
Table 2 FFV in ZSM-5/PVA and ZIF-67/PVA
无机粒子掺杂比例/%(质量) | FFV/% | |
---|---|---|
ZSM-5/PVA | ZIF-67/PVA | |
0 | 15.21 | 25.44 |
3 | 35.46 | 27.13 |
6 | 35.76 | 30.34 |
9 | 16.80 | 28.43 |
图7 无机粒子含量对纯酯、水分子在ZSM-5/PVA、ZIF-67/PVA中的扩散系数的影响
Fig.7 Effect of inorganic particle content on diffusion coefficient of pure ester and water molecules in ZSM-5/PVA and ZIF-67/PVA
体系 | 水分子的扩散系数D×1012/(m2/s) | |
---|---|---|
模拟结果 | 实验结果[ | |
纯PVA | 10~300 | 480~12670 |
表3 纯PVA中水分子的扩散系数D
Table 3 Diffusion coefficient D of water molecules in pure PVA
体系 | 水分子的扩散系数D×1012/(m2/s) | |
---|---|---|
模拟结果 | 实验结果[ | |
纯PVA | 10~300 | 480~12670 |
图8 温度对纯酯、水分子在ZSM-5/PVA、ZIF-67/PVA中的扩散系数的影响
Fig.8 Effect of temperature on diffusion coefficient of pure ester and water molecules in ZSM-5/PVA and ZIF-67/PVA
图9 不同组成酯水二元体系在ZSM-5/PVA、ZIF-67/PVA中的扩散系数
Fig.9 Diffusion coefficients of ester and water binary system in ZSM-5/PVA and ZIF-67/PVA at different concentration
1 | 刘燕青, 胡听听, 鲁落义, 等. PDMS/ZSM-5膜的制备及渗透汽化分离水中乙酸正丁酯和乙酸乙酯[J]. 化工学报, 2020, 71(2): 843-853. |
Liu Y Q, Hu T T, Lu L Y, et al. Preparation of PDMS/ZSM-5 membranes and pervaporation separation of n-butyl acetate and ethyl acetate from aqueous media[J]. CIESC Journal, 2020, 71(2): 843-853. | |
2 | Xia S S, Dong X L, Zhu Y X, et al. Dehydration of ethyl acetate-water mixtures using PVA/ceramic composite pervaporation membrane[J]. Separation and Purification Technology, 2011, 77(1): 53-59. |
3 | 董颜箔, 何瑞宁, 牟春霞, 等. 离子液体催化反应精馏合成乙酸乙酯工艺模拟[J]. 化工进展, 2018, 37(2): 468-474. |
Dong Y B, He R N, Mu C X, et al. Process simulation of synthesis of ethyl acetate by reactive distillation catalyzed by ionic liquid[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 468-474. | |
4 | 邹昀, 童张法, 刘琨, 等.间歇反应器内醋酸丁酯酯化反应与渗透汽化集成过程的模型计算[J]. 催化学报, 2010, 31(8): 999-1005. |
Zou Y, Tong Z F, Liu K, et al. Modeling of esterification in a batch reactor coupled with pervaporation for production of n-butyl acetate[J]. Chinese Journal of Catalysis, 2010, 31(8): 999-1005. | |
5 | Alamaria A M, Nawawi M G M, Zamrud Z. Sago/PVA blend membranes for the recovery of ethyl acetate from water[J]. Arabian Journal of Chemistry, 2019, 12(8): 2183-2191. |
6 | Wu Q, Sun Y, Wang W, et al. Block copolymer pervaporation membranes with microphase separated structures for ethyl acetate separation[J]. Separation and Purification Technology, 2022, 298: 121654. |
7 | Ramaiah K P, Satyasri D, Sridhar S, et al. Removal of hazardous chlorinated VOCs from aqueous solutions using novel ZSM-5 loaded PDMS/PVDF composite membrane consisting of three hydrophobic layers[J]. Journal of Hazardous Materials, 2013, 261: 362-371. |
8 | Liu G P, Xiangli F J, Wei W, et al. Improved performance of PDMS/ceramic composite pervaporation membranes by ZSM-5 homogeneously dispersed in PDMS via a surface graft/coating approach[J]. Chemical Engineering Journal, 2011, 174(2/3): 495-503. |
9 | 王维, 姜雪迎, 李悦, 等. 亲水型ZSM-5分子筛填充PVA膜及分离乙酸乙酯/水的应用[J]. 化工学报, 2020, 71(8): 3807-3818. |
Wang W, Jiang X Y, Li Y, et al. Application of PVA membrane filled with hydrophilic ZSM-5 molecular sieve on separation of water from ethyl acetate[J]. CIESC Journal, 2020, 71(8): 3807-3818. | |
10 | Shi Q, Chen Z F, Song Z W, et al. Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribological behaviors[J]. Angewandte Chemie International Edition, 2011, 50(3): 672-675. |
11 | Xu X, Nikolaeva D, Hartanto Y, et al. MOF-based membranes for pervaporation[J]. Separation and Purification Technology, 2021, 278: 119233. |
12 | 鲁落义, 胡听听, 王维, 等. ZIF-67/PEBA杂化膜分离水中乙酸乙酯[J]. 高校化学工程学报, 2021, 35(2): 259-266. |
Lu L Y, Hu T T, Wang W, et al. ZIF-67/PEBA Hybrid membranes for ethyl acetate separation from aqueous solutions[J]. Journal of Chemical Engineering of Chinese Universities, 2021, 35(2): 259-266. | |
13 | Sun H, Wang F K, Li X T, et al. Facile fabrication of a continuous ZIF-67 membrane for efficient azeotropic organic solvent mixture separation[J]. Angewandte Chemie International Edition, 2023, 62(15): e202300262. |
14 | Zhao Z J, Ding L, Hinterding R, et al. MXene assisted preparation of well-intergrown ZIF-67 membrane for helium separation[J]. Journal of Membrane Science, 2022, 652: 120432. |
15 | Contreras R, Muñoz-Espinoza J, Sánchez B. Theoretical models of solubility for organic solvents. A conceptual density functional theory approach[J]. Journal of Molecular Liquids, 2024, 403: 124736. |
16 | Zou Y, Liu Y Q, Muhammad Y, et al. Experimental and modelling studies of pervaporative removal of odorous diacetyl and S-methylthiobutanoate from aqueous solutions using PEBA membrane[J]. Separation and Purification Technology, 2018, 200: 1-10. |
17 | Liu Y Q, Hu T T, Zhao J H, et al. Synthesis and application of PDMS/OP-POSS membrane for the pervaporative recovery of n-butyl acetate and ethyl acetate from aqueous media[J]. Journal of Membrane Science, 2019, 591: 117324. |
18 | Gubbins K E, Liu Y-C, Moore J D, et al. The role of molecular modeling in confined systems: impact and prospects[J]. Physical Chemistry Chemical Physics, 2011, 13(1): 58-85. |
19 | Tamai Y, Tanaka H, Nakanishi K. Molecular simulation of permeation of small penetrants through membranes. 1. Diffusion coefficients[J]. Macromolecules, 1994, 27(16): 4498-4508. |
20 | 朱宇, 陆小华, 丁皓, 等.分子模拟在化工应用中的若干问题及思考[J].化工学报, 2004, 55(8):1213-1223. |
Zhu Y, Lu X H, Ding H, et al. Molecular simulation in chemical engineering[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(8):1213-1223. | |
21 | 吴凡, 彭旭东, 江锦波, 等. 分子动力学模拟预测天然气密度和黏度的可行性研究[J].化工学报, 2024, 75(2): 450-462. |
Wu F, Peng X D, Jiang J B, et al. Study on adaptability of molecular dynamics in predicting density and viscosity of natural gas[J]. CIESC Journal, 2024, 75(2): 450-462. | |
22 | 胡建波, 刘洪超, 胡齐, 等. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J].化工学报, 2023, 74(9): 3756-3765. |
Hu J B, Liu H C, Hu Q, et al. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane[J]. CIESC Journal, 2023, 74(9): 3756-3765. | |
23 | Li X j, Lin B q, Xu H. Monte Carlo simulation of methane molecule adsorption on coal with adsorption potential[J]. International Journal of Mining Science and Technology, 2014, 24(1): 17-22. |
24 | Wang S, Feng Q H, Javadpour F, et al. Competitive adsorption of methane and ethane in montmorillonite nanopores of shale at supercritical conditions: a grand canonical Monte Carlo simulation study[J]. Chemical Engineering Journal, 2019, 355: 76-90. |
25 | 王玉杰, 李申辉, 赵之平. M-MOF-74吸附分离H2/He混合物的分子模拟研究[J].化工学报, 2022, 73(10): 4507-4517. |
Wang Y J, Li S H, Zhao Z P. Molecular simulation study on adsorption and separation of H2/He mixtures by M-MOF-74[J]. CIESC Journal, 2022, 73(10): 4507-4517. | |
26 | Pan F S, Peng F B, Jiang Z Y. Diffusion behavior of benzene/cyclohexane molecules in poly(vinyl alcohol)-graphite hybrid membranes by molecular dynamics simulation[J]. Chemical Engineering Science, 2007, 62(3): 703-710. |
27 | Pazirofteh M, Dehghani M, Niazi S, et al. Molecular dynamics simulation and Monte Carlo study of transport and structural properties of PEBA 1657 and 2533 membranes modified by functionalized POSS-PEG material[J]. Journal of Molecular Liquids, 2017, 241: 646-653. |
28 | Hou S Y, Tang Y L, Zhu T L, et al. The molecular simulation and experimental investigation of toluene and naphthalene adsorption on ordered porous silica[J]. Chemical Engineering Journal, 2022, 435: 134844. |
29 | Mozaffari Maid M, Kordzadeh-Kermani V, Ghalandari V, et al. Adsorption isotherm models: a comprehensive and systematic review (2010—2020) [J]. Science of The Total Environment, 2022, 812: 151334. |
30 | Cleeton C, de Oliveira F L, Neumann R F, et al. A process-level perspective of the impact of molecular force fields on the computational screening of MOFs for carbon capture[J]. Energy & Environmental Science, 2023, 16(9): 3899-3918. |
31 | 周建海, 赵会玲, 胡军, 等. 氨基修饰微孔/介孔复合材料AM-5A-MCM-41对CO2吸附分离的分子模拟[J]. 化工学报, 2014, 65(5): 1680-1687. |
Zhou J H, Zhao H L, Hu J, et al. Molecular simulation of CO2 adsorption on amine modified micro/mesoporous composite of AM-5A-MCM-41[J]. CIESC Journal, 2014, 65(5): 1680-1687. | |
32 | Jablonka K M, Ongari D, Smit B. Applicability of tail corrections in the molecular simulations of porous materials[J]. Journal of Chemical Theory and Computation, 2019, 15(10): 5635–5641. |
33 | Marry V, Ciccotti G. Trotter derived algorithms for molecular dynamics with constraints: velocity verlet revisited[J]. Journal of Computational Physics, 2007, 222(1): 428-440. |
34 | Yu P D, Schröter M, Sperl M. Velocity distribution of a homogeneously cooling granular gas[J]. Physical Review Letters, 2020, 124(20): 208007. |
35 | Tao L, He J L, Arbaugh T, et al. Machine learning prediction on the fractional free volume of polymer membranes[J]. Journal of Membrane Science, 2023, 665: 121131. |
36 | Zhang Q G, Liu Q L, Chen Y, et al. Microstructure dependent diffusion of water-ethanol in swollen poly(vinyl alcohol): a molecular dynamics simulation study[J]. Chemical Engineering Science, 2009, 64(2): 334-340. |
37 | Zhang Q G, Liu Q L, Jiang Z Y, et al. Anti-trade-off in dehydration of ethanol by novel PVA/APTEOS hybrid membranes[J]. Journal of Membrane Science, 2007, 287(2): 237-245. |
[1] | 陈彦霖, 周爱国, 郑家乐, 杨川箬, 葛天舒. 载体对于胺浸渍类DAC吸附剂性能的影响[J]. 化工学报, 2024, 75(S1): 217-222. |
[2] | 赵振刚, 周梦瑶, 金典, 张大骋. 基于泡沫碳扩散层的直接甲醇燃料电池改性研究[J]. 化工学报, 2024, 75(S1): 259-266. |
[3] | 王新月, 徐小虎, 张海洋, 尹春华. 维生素A醋酸酯/环糊精包合及性质研究[J]. 化工学报, 2024, 75(S1): 321-328. |
[4] | 唐宇昊, 张迎迎, 赵智伟, 鲁梦悦, 张飞飞, 王小青, 杨江峰. 弱极性超微孔Sc/In-CPM-66A用于CH4/N2吸附分离性能[J]. 化工学报, 2024, 75(9): 3210-3220. |
[5] | 吕方明, 包志铭, 王博文, 焦魁. 气体扩散层侵入流道对燃料电池水管理影响研究[J]. 化工学报, 2024, 75(8): 2929-2938. |
[6] | 黄静茹, 陈佳轩, 张群锋, 阮晋, 朱来, 叶光华, 周兴贵. ZSM-5分子筛结构对苯烷基化反应性能影响的数值模拟研究[J]. 化工学报, 2024, 75(7): 2544-2555. |
[7] | 吴哲明, 张碧云, 郑仁朝. 腈水解酶立体选择性改造及其合成布瓦西坦[J]. 化工学报, 2024, 75(7): 2633-2643. |
[8] | 贾娟, 杨扬, 朱恂, 叶丁丁, 陈蓉, 廖强. 用于伤口敷料的水凝胶电刺激释药性能[J]. 化工学报, 2024, 75(7): 2700-2708. |
[9] | 马林峰, 欧爱彤, 李志远, 李垚, 刘润泽, 吴晓乐, 徐景涛. Na2S改性生物炭高效吸附重金属离子:制备及吸附机理[J]. 化工学报, 2024, 75(7): 2594-2603. |
[10] | 王涛虹, 王超, 李政, 刘莹, 田歌, 常刚刚, 阳晓宇, 鲍宗必. 固载Cu(Ⅰ)的π络合MOF吸附剂用于乙烷/乙烯的选择性分离[J]. 化工学报, 2024, 75(7): 2565-2573. |
[11] | 陈彦伶, 袁炳志, 王丽伟, 张宸, 朱涵玉. 非平衡条件下金属氯化物-氨工质对的吸附动力学研究[J]. 化工学报, 2024, 75(6): 2252-2261. |
[12] | 王岩, 周佳文, 孙培亮, 陈勇, 齐元红, 彭冲. 磁性聚氨基噻唑吸附剂脱除水体Hg2+性能[J]. 化工学报, 2024, 75(6): 2283-2298. |
[13] | 冀钟, 赵彦玲, 陈雨濛, 高林霞, 王翼鹏, 刘欢. ZSM-5分子筛对典型涂装VOCs的吸附性能及机理研究[J]. 化工学报, 2024, 75(6): 2332-2343. |
[14] | 秦晗淞, 李国梁, 闫昊, 冯翔, 刘熠斌, 陈小博, 杨朝合. 多级孔ZSM-5分子筛中油酸甲酯催化裂解吸附和扩散行为模拟研究[J]. 化工学报, 2024, 75(5): 1870-1881. |
[15] | 孟园, 倪善, 刘亚锋, 王文杰, 赵越, 朱育丹, 杨良嵘. 功能化多孔氮化碳材料对铀的吸附性能研究[J]. 化工学报, 2024, 75(4): 1616-1629. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 369
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 139
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||