化工学报 ›› 2024, Vol. 75 ›› Issue (11): 4369-4377.DOI: 10.11949/0438-1157.20240574
梁爽1(
), 李兴洵1(
), 高龙燕1, 郭绪强2, 陈光进1, 孙长宇1
收稿日期:2024-05-30
修回日期:2024-08-09
出版日期:2024-11-25
发布日期:2024-12-26
通讯作者:
李兴洵
作者简介:梁爽(1995—),男,博士研究生,2697972207@qq.com
基金资助:
Shuang LIANG1(
), Xingxun LI1(
), Longyan GAO1, Xuqiang GUO2, Guangjin CHEN1, Changyu SUN1
Received:2024-05-30
Revised:2024-08-09
Online:2024-11-25
Published:2024-12-26
Contact:
Xingxun LI
摘要:
在海底或寒冷地区原油的开采和运输过程中,当达到气体水合物形成的温度和压力条件后,水合物会在管道内形成和聚集,进而堵塞管道、阀门等,威胁油气运输安全。因此,研究水合物在油气输送管道中的形成问题一直是油气生产和运输部门关注的焦点。本实验应用高压可视水合物膜生长微观实验装置,采用悬滴法对悬垂在甲苯、甲苯与正庚烷混合油相(1∶1,体积比)、正庚烷中的微水滴表面甲烷水合物膜形貌与生长特性进行研究,测定了不同温度(274.15~277.15 K)和压力(5.37~7.26 MPa)下甲烷水合物膜生长动力学数据。实验结果表明,水合物膜生长速率随甲烷在不同油相中的溶解度增大而增大,膜生长速率(274.15 K,6 MPa)在正庚烷中(0.26 mm/s)>混合油中(0.23 mm/s)>甲苯中(0.21 mm/s)。水合物膜增厚生长过程中水通过膜向外转移,使得水合物膜上的褶皱间的“沟壑”逐渐被增厚生长的水合物填平,甲苯中形成的水合物表面粗糙增厚速率最快而正庚烷中形成的水合物膜表面光滑增厚速率最慢。温度的降低和压力的增加都使得水合物膜横向生长速率增加,其中压力的影响比温度更显著,且生长速率均呈现在甲苯中最慢正庚烷中最快。以压力差为驱动力的模型可很好地预测甲烷水合物膜生长动力学数据(AARD=6.12%)。
中图分类号:
梁爽, 李兴洵, 高龙燕, 郭绪强, 陈光进, 孙长宇. 油相中水滴表面甲烷水合物膜生长动力学研究[J]. 化工学报, 2024, 75(11): 4369-4377.
Shuang LIANG, Xingxun LI, Longyan GAO, Xuqiang GUO, Guangjin CHEN, Changyu SUN. Research on kinetics of methane hydrate film growth on water droplet in oil phase[J]. CIESC Journal, 2024, 75(11): 4369-4377.
图6 不同油相中生成的水合物膜增厚生长1 h前后形貌对比(a),(d)在甲苯中增厚生长前和生长后的水合物膜;(b),(e)在混合油中增厚生长前和生长后的水合物膜;(c),(f)在正庚烷中增厚生长前和生长后的水合物膜Fig.6 Morphology comparison of hydrate films before and after 1 h of thickening growth(a), (d) hydrate film before and after thickening growth in toluene; (b), (e) hydrate film before and after thickening growth in mixed oil; (c), (f) hydrate film before and after thickening growth in n-heptane
图7 图6中红框处同油相中生成的水合物膜增厚生长1 h前后形貌局部放大对比(a),(d)在甲苯中增厚生长前和生长后的水合物膜;(b),(e)在混合油中增厚生长前和生长后的水合物膜;(c),(f)在正庚烷中增厚生长前和生长后的水合物膜(a), (d) hydrate film before and after thickening growth in toluene; (b), (e) hydrate film before and after thickening growth in mixed oil; (c), (f) hydrate film before and after thickening growth in n-heptane
Fig.7 Morphology comparison of local magnification of the hydrate films before and after 1 h of thickening growth at the red box in Fig.6
图9 不同压力和油相中水滴表面水合物膜生长速率对比(274.15 K)
Fig.9 The comparison of hydrate film growth rates on water droplet surfaces in different pressure and oil (274.15 K)
| 油样 | 温度/ K | 压力/ MPa | ΔP/MPa | ψ | 实验值/ (mm/s) | 计算值/ (mm/s) | AARD/% |
|---|---|---|---|---|---|---|---|
| 甲苯 | 274.15 | 5.37 | 2.48 | 0.0315 | 0.1730 | 0.1929 | 11.48 |
| 6.00 | 3.11 | 0.3167 | 0.3036 | 4.13 | |||
| 6.63 | 3.74 | 0.4394 | 0.4394 | 0.00 | |||
| 7.26 | 4.37 | 0.6301 | 0.6001 | 4.76 | |||
| 混合油 | 274.15 | 5.37 | 2.48 | 0.0339 | 0.1843 | 0.2076 | 12.67 |
| 6.00 | 3.11 | 0.3525 | 0.3268 | 7.31 | |||
| 6.63 | 3.74 | 0.4640 | 0.4728 | 1.90 | |||
| 7.26 | 4.37 | 0.6511 | 0.6458 | 0.80 | |||
| 正庚烷 | 274.15 | 5.37 | 2.48 | 0.0385 | 0.1950 | 0.2358 | 20.93 |
| 6.00 | 3.11 | 0.3961 | 0.3711 | 6.31 | |||
| 6.63 | 3.74 | 0.5256 | 0.5370 | 2.17 | |||
| 7.26 | 4.37 | 0.7415 | 0.7334 | 1.09 |
表1 不同条件下水合物膜生长速率预测结果
Table 1 The predicted growth rates of hydrate film under different conditions
| 油样 | 温度/ K | 压力/ MPa | ΔP/MPa | ψ | 实验值/ (mm/s) | 计算值/ (mm/s) | AARD/% |
|---|---|---|---|---|---|---|---|
| 甲苯 | 274.15 | 5.37 | 2.48 | 0.0315 | 0.1730 | 0.1929 | 11.48 |
| 6.00 | 3.11 | 0.3167 | 0.3036 | 4.13 | |||
| 6.63 | 3.74 | 0.4394 | 0.4394 | 0.00 | |||
| 7.26 | 4.37 | 0.6301 | 0.6001 | 4.76 | |||
| 混合油 | 274.15 | 5.37 | 2.48 | 0.0339 | 0.1843 | 0.2076 | 12.67 |
| 6.00 | 3.11 | 0.3525 | 0.3268 | 7.31 | |||
| 6.63 | 3.74 | 0.4640 | 0.4728 | 1.90 | |||
| 7.26 | 4.37 | 0.6511 | 0.6458 | 0.80 | |||
| 正庚烷 | 274.15 | 5.37 | 2.48 | 0.0385 | 0.1950 | 0.2358 | 20.93 |
| 6.00 | 3.11 | 0.3961 | 0.3711 | 6.31 | |||
| 6.63 | 3.74 | 0.5256 | 0.5370 | 2.17 | |||
| 7.26 | 4.37 | 0.7415 | 0.7334 | 1.09 |
| 1 | 陈光进, 孙长宇, 马庆兰. 气体水合物科学与技术[M]. 北京: 化学工业出版社, 2008. |
| Chen G J, Sun C Y, Ma Q L. Gas Hydrate Science and Technology[M]. Beijing: Chemical Industry Press, 2008. | |
| 2 | Hammerschmidt E G. Formation of gas hydrates in natural gas transmission lines[J]. Industrial & Engineering Chemistry, 1934, 26(8): 851-855. |
| 3 | 杨丽丽, 王陆新, 潘继平. 全球深水油气勘探开发现状、前景及启示[J]. 中国矿业, 2017, 26(S2): 14-17. |
| Yang L L, Wang L X, Pan J P. Situation and prospect of global deepwater oil and gas exploration and development[J]. China Mining Magazine, 2017, 26(S2): 14-17. | |
| 4 | Lv X F, Liu Y, Zhou S D, et al. Study on the decomposition mechanism and kinetic model of natural gas hydrate slurry in water-in-oil emulsion flowing systems[J]. RSC Advances, 2021, 11(7): 3879-3889. |
| 5 | Mu L, Li S, Ma Q L, et al. Experimental and modeling investigation of kinetics of methane gas hydrate formation in water-in-oil emulsion[J]. Fluid Phase Equilibria, 2014, 362: 28-34. |
| 6 | Chen J, Liu J, Chen G J, et al. Insights into methane hydrate formation, agglomeration, and dissociation in water+diesel oil dispersed system[J]. Energy Conversion and Management, 2014, 86: 886-891. |
| 7 | 宋光春, 施政灼, 李玉星, 等. 油水体系内水合物的生成: 温度、压力和搅拌速率影响[J]. 化工进展, 2019, 38(3): 1338-1345. |
| Song G C, Shi Z Z, Li Y X, et al. Hydrate formation in oil-water systems: investigations of the influences of temperature, pressure and rotation rate[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1338-1345. | |
| 8 | de Almeida V, Serris E, Lavalle G, et al. Mechanisms of hydrate blockage in oil-water dispersions based on flow loop experiments[J]. Chemical Engineering Science, 2023, 273: 118632. |
| 9 | Chen J, Chen G J, Yuan Q, et al. Insights into induction time and agglomeration of methane hydrate formation in diesel oil dominated dispersed systems[J]. Energy, 2019, 170: 604-610. |
| 10 | Mali G A, Chapoy A, Tohidi B. Investigation into the effect of subcooling on the kinetics of hydrate formation[J]. The Journal of Chemical Thermodynamics, 2018, 117: 91-96. |
| 11 | Farhadian A, Varfolomeev M A, Rezaeisadat M, et al. Toward a bio-based hybrid inhibition of gas hydrate and corrosion for flow assurance[J]. Energy, 2020, 210: 118549. |
| 12 | Talatori S, Barth T. Rate of hydrate formation in crude oil/gas/water emulsions with different water cuts[J]. Journal of Petroleum Science and Engineering, 2011, 80(1): 32-40. |
| 13 | Sharifi H, Ripmeester J, Walker V K, et al. Kinetic inhibition of natural gas hydrates in saline solutions and heptane[J]. Fuel, 2014, 117: 109-117. |
| 14 | Wang L M, Zheng X, Xiao P, et al. Effects of wax on the formation of methane hydrate in oil-dominate systems: experiments and molecular dynamics simulations[J]. Fuel, 2024, 357: 129748. |
| 15 | Song G C, Li Y X, Wang W C, et al. Experimental study of hydrate formation in oil-water systems using a high-pressure visual autoclave[J]. AIChE Journal, 2019, 65(9): 1-14. |
| 16 | Longinos S N, Parlaktuna M. The effect of experimental conditions on methane hydrate formation by the use of single and dual impellers[J]. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132(2): 771-794. |
| 17 | Das A, Farnham T A, Bengaluru Subramanyam S, et al. Designing ultra-low hydrate adhesion surfaces by interfacial spreading of water-immiscible barrier films[J]. ACS Applied Materials & Interfaces, 2017, 9(25): 21496-21502. |
| 18 | Aspenes G, Høiland S, Borgund A E, et al. Wettability of petroleum pipelines: influence of crude oil and pipeline material in relation to hydrate deposition[J]. Energy & Fuels, 2010, 24(1): 483-491. |
| 19 | Kolotova D S, Derkach S R, Simon S, et al. Evaluation of anti-agglomerate hydrate inhibitor in water-in-crude oil emulsions of different water cut[J]. Petroleum Science and Technology, 2020, 38(19): 922-928. |
| 20 | Liu Z X, Song Y C, Liu W G, et al. Formation of methane hydrate in oil-water emulsion governed by the hydrophilic and hydrophobic properties of non-ionic surfactants[J]. Energy & Fuels, 2019, 33(6): 5777-5784. |
| 21 | 王唯, 张东旭, 李遵照, 等. 油包水乳状液体系中水合物生长行为研究进展[J]. 化工进展, 2023, 42(3): 1155-1166. |
| Wang W, Zhang D X, Li Z Z, et al. Research progress on the growth behavior of hydrates in water-in-oil emulsion systems[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1155-1166. | |
| 22 | Almashwali A A, Bavoh C B, Lal B, et al. Gas hydrate in oil-dominant systems: a review[J]. ACS Omega, 2022, 7(31): 27021-27037. |
| 23 | 彭宝仔, 罗虎, 孙长宇, 等. 甲烷水合物膜生长动力学研究[J]. 化学学报, 2007, 65(2): 95-99. |
| Peng B Z, Luo H, Sun C Y, et al. Study on growth kinetics of methane hydrate film[J]. Acta Chimica Sinica, 2007, 65(2): 95-99. | |
| 24 | 宋瑛, 田宜灵, 肖衍繁, 等. 二元液液系统界面张力[J]. 化工学报, 1999, 50(5): 620-628. |
| Song Y, Tian Y L, Xiao Y F, et al. Interfacial tensions of binary liquid-liquid systems[J]. CIESC Journal, 1999, 50(5): 620-628. | |
| 25 | Li S L, Wang Y F, Sun C Y, et al. Factors controlling hydrate film growth at water/oil interfaces[J]. Chemical Engineering Science, 2015, 135: 412-420. |
| 26 | Pérez-Hernández N, Luong T Q, Febles M, et al. The mobility of water molecules through hydrated pores[J]. The Journal of Physical Chemistry C, 2012, 116(17): 9616-9630. |
| 27 | Liang H Y, Guan D W, Yang L, et al. Multi-scale characterization of shell thickness and effective volume fraction during gas hydrates formation: a kinetic study[J]. Chemical Engineering Journal, 2021, 424: 130360. |
| 28 | 陆引哲, 刘道平, 杨亮. 悬垂水滴与悬浮气泡表面气体水合物形成特性对比[J]. 能源研究与信息, 2015, 31(1): 48-53. |
| Lu Y Z, Liu D P, Yang L. Comparative analysis of growth characteristics of hydrate formation on the surface of suspended water droplet and bubble[J]. Energy Research and Information, 2015, 31(1): 48-53. | |
| 29 | Zeng X Y, Zhong J R, Sun Y F, et al. Investigating the partial structure of the hydrate film formed at the gas/water interface by Raman spectra[J]. Chemical Engineering Science, 2017, 160: 183-190. |
| 30 | 马沛生, 华超, 夏淑倩. 甲烷在烷烃中溶解性质的研究[J]. 高校化学工程学报, 2002, 16(6): 680-685. |
| Ma P S, Hua C, Xia S Q. Study of the solubility of methane in alkanes[J]. Journal of Chemical Engineering of Chinese Universities, 2002, 16(6): 680-685. | |
| 31 | 薛海涛, 卢双舫, 付晓泰. 甲烷、二氧化碳和氮气在油相中溶解度的预测模型[J]. 石油与天然气地质, 2005, 26(4): 444-449. |
| Xue H T, Lu S F, Fu X T. Forecasting model of solubility of CH4, CO2 and N2 in crude oil[J]. Oil & Gas Geology, 2005, 26(4): 444-449. | |
| 32 | 郭玉高, 马沛生, 夏淑倩. 甲烷在烃类混合溶剂中高压溶解度的测定[J]. 天津大学学报(自然科学与工程技术版), 2005, 38(11): 960-965. |
| Guo Y G, Ma P S, Xia S Q. Determination on the solubility of methane in hydrocarbon mixtures under high pressures[J]. Journal of Tianjin University (Science and Technology), 2005, 38(11): 960-965. | |
| 33 | Kishimoto M, Ohmura R. Correlation of the growth rate of the hydrate layer at a guest/liquid-water interface to mass transfer resistance[J]. Energies, 2012, 5(1): 92-100. |
| 34 | Li S L, Sun C Y, Liu B, et al. Initial thickness measurements and insights into crystal growth of methane hydrate film[J]. AIChE Journal, 2013, 59(6): 2145-2154. |
| [1] | 赵焕娟, 包颖昕, 于康, 刘婧, 钱新明. 多元组分爆轰不稳定性定量实验研究[J]. 化工学报, 2024, 75(S1): 339-348. |
| [2] | 徐宏标, 杨亮, 李子栋, 刘道平. 盐水微滴/泡沫铜复合体系中甲烷水合物生成动力学研究[J]. 化工学报, 2024, 75(9): 3287-3296. |
| [3] | 祝赫, 张仪, 齐娜娜, 张锴. 欧拉-欧拉双流体模型中颗粒黏性对液固散式流态化的影响[J]. 化工学报, 2024, 75(9): 3103-3112. |
| [4] | 丁湧, 李文建, 陈昭宇, 曹立辉, 刘轩铭, 任强强, 胡松, 向军. 废旧晶体硅光伏组件EVA有氧热解动力学与产物特性[J]. 化工学报, 2024, 75(9): 3310-3319. |
| [5] | 唐昊, 胡定华, 李强, 张轩畅, 韩俊杰. 抗加速度双切线弧流道内气泡动力学行为数值与可视化研究[J]. 化工学报, 2024, 75(9): 3074-3082. |
| [6] | 曾港, 陈林, 杨董, 袁海专, 黄彦平. 矩形通道内超临界CO2局部热流场可视化实验[J]. 化工学报, 2024, 75(8): 2831-2839. |
| [7] | 罗莉, 陈文尧, 张晶, 钱刚, 周兴贵, 段学志. 氧化铝结构与表面性质调控及其催化甲醇脱水制二甲醚性能研究[J]. 化工学报, 2024, 75(7): 2522-2532. |
| [8] | 吴邦汉, 林定标, 陆海峰, 郭晓镭, 刘海峰. 竖直管气动物流传输系统管道压降和传送瓶输送特性[J]. 化工学报, 2024, 75(7): 2465-2473. |
| [9] | 马君霞, 李林涛, 熊伟丽. 基于Tri-training GPR的半监督软测量建模方法[J]. 化工学报, 2024, 75(7): 2613-2623. |
| [10] | 杨艳, 郭亚丽, 于硕文, 潘泊年, 沈胜强. 液氨喷射泵热力性能的计算分析[J]. 化工学报, 2024, 75(6): 2134-2142. |
| [11] | 陈彦伶, 袁炳志, 王丽伟, 张宸, 朱涵玉. 非平衡条件下金属氯化物-氨工质对的吸附动力学研究[J]. 化工学报, 2024, 75(6): 2252-2261. |
| [12] | 霍宗伟, 牛亚宾, 潘艳秋. 油水膜分离中高黏度油滴行为研究和影响因素分析[J]. 化工学报, 2024, 75(6): 2262-2273. |
| [13] | 刘礼豪, 黄婷, 雍宇, 罗昕浩, 赵泽明, 宋尚飞, 史博会, 陈光进, 宫敬. 含粉砂盐水体系甲烷水合物生成与固相沉积规律[J]. 化工学报, 2024, 75(5): 1987-2000. |
| [14] | 王文雅, 张玮, 楼小玲, 钟若菲, 陈冰冰, 贠军贤. 纳米纤维素嵌合型晶胶微球的多微管成形与模拟[J]. 化工学报, 2024, 75(5): 2060-2071. |
| [15] | 薛潇, 商敏静, 苏远海. 微反应器内药物连续流合成的研究进展[J]. 化工学报, 2024, 75(4): 1439-1454. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号