化工学报 ›› 2024, Vol. 75 ›› Issue (11): 4170-4177.DOI: 10.11949/0438-1157.20240591
收稿日期:
2024-05-31
修回日期:
2024-07-22
出版日期:
2024-11-25
发布日期:
2024-12-26
通讯作者:
张锋
作者简介:
朱永康(1998—),男,硕士研究生,z1322520@163.com
基金资助:
Yongkang ZHU(), Xiemin LIU, Feng ZHANG(), Wenhua HOU, Zhibing ZHANG
Received:
2024-05-31
Revised:
2024-07-22
Online:
2024-11-25
Published:
2024-12-26
Contact:
Feng ZHANG
摘要:
通常认为,减小气泡尺寸是提高气液鼓泡体系传质效率的有效方法。然而研究表明小气泡可能受体系内污染物的影响更严重,其带来的传质强化效果可能不及预期。实验研究了CO2单气泡在含污染物水溶液中的上升吸收过程,考察了污染物浓度和气泡初始尺寸对单气泡运动和传质特性的影响。结果表明,污染物浓度的上升会降低气泡运动速度与传质效率,但这些影响存在上限;气泡初始尺寸同样影响传质效果,一定污染条件下,较大气泡在较高的上升高度内更具优势。由此,可根据液体的污染性质和反应器结构参数,依据最佳能效原则,选择合适的气泡尺度。
中图分类号:
朱永康, 刘勰民, 张锋, 侯文华, 张志炳. 污染对单气泡运动与传质特性的影响[J]. 化工学报, 2024, 75(11): 4170-4177.
Yongkang ZHU, Xiemin LIU, Feng ZHANG, Wenhua HOU, Zhibing ZHANG. Effects of contamination on the motion and mass transfer of single bubble[J]. CIESC Journal, 2024, 75(11): 4170-4177.
正己醇浓度/(mol·L-1) | σ/(N·m-1) |
---|---|
0 | 0.07290 |
1.0×10-4 | 0.07279 |
2.5×10-4 | 0.07272 |
5.0×10-4 | 0.07241 |
1.0×10-3 | 0.07149 |
2.5×10-3 | 0.06798 |
5.0×10-3 | 0.06178 |
表1 实验温度下正己醇溶液的表面张力
Table 1 Surface tension of n-hexanol solutions
正己醇浓度/(mol·L-1) | σ/(N·m-1) |
---|---|
0 | 0.07290 |
1.0×10-4 | 0.07279 |
2.5×10-4 | 0.07272 |
5.0×10-4 | 0.07241 |
1.0×10-3 | 0.07149 |
2.5×10-3 | 0.06798 |
5.0×10-3 | 0.06178 |
图4 不同浓度正己醇水溶液中气泡上升速度与当量直径实验结果
Fig.4 Experimental results of rising velocity and equivalent diameter of bubbles in aqueous solutions of different concentrations of n-hexanol
17 | Jia H W, Zhang P. Mass transfer of a rising spherical bubble in the contaminated solution with chemical reaction and volume change[J]. International Journal of Heat and Mass Transfer, 2017, 110: 43-57. |
18 | Saboni A, Alexandrova S, Karsheva M, et al. Mass transfer from a contaminated fluid sphere[J]. AIChE Journal, 2011, 57(7): 1684-1692. |
19 | Takemura F, Yabe A. Rising speed and dissolution rate of a carbon dioxide bubble in slightly contaminated water[J]. Journal of Fluid Mechanics, 1999, 378: 319-334. |
20 | Luo Y, Wang Z C, Zhang B, et al. Experimental study of the effect of the surfactant on the single bubble rising in stagnant surfactant solutions and a mathematical model for the bubble motion[J]. Industrial & Engineering Chemistry Research, 2022, 61(26): 9514-9527. |
21 | Hori Y, Hirota Y, Hayashi K, et al. Combined effects of alcohol and electrolyte on mass transfer from single carbon-dioxide bubbles in vertical pipes[J]. International Journal of Heat and Mass Transfer, 2019, 136: 521-530. |
22 | Dean J A. Lange’s handbook of chemistry[J]. Materials and Manufacturing Processes, 1990, 5(4): 687-688. |
23 | Hosoda S, Abe S, Hosokawa S, et al. Mass transfer from a bubble in a vertical pipe[J]. International Journal of Heat and Mass Transfer, 2014, 69: 215-222. |
24 | Kestin J, Sokolov M, Wakeham W A. Viscosity of liquid water in the range -8℃ to 150℃[J]. Journal of Physical and Chemical Reference Data, 1978, 7(3): 941-948. |
25 | Himmelblau D M. Diffusion of dissolved gases in liquids[J]. Chemical Reviews, 1964, 64(5): 527-550. |
26 | Li C X, Cui Y Z, Shi X G, et al. Numerical simulation on the terminal rise velocity and mass transfer rate of single sub-millimeter bubbles[J]. Chemical Engineering Science, 2021, 246: 116963. |
27 | Nock W J, Heaven S, Banks C J. Mass transfer and gas-liquid interface properties of single CO2 bubbles rising in tap water[J]. Chemical Engineering Science, 2016, 140: 171-178. |
28 | Vasconcelos J M T, Orvalho S P, Alves S S. Gas-liquid mass transfer to single bubbles: effect of surface contamination[J]. AIChE Journal, 2002, 48(6): 1145-1154. |
29 | Alves S S, Orvalho S P, Vasconcelos J M T. Effect of bubble contamination on rise velocity and mass transfer[J]. Chemical Engineering Science, 2005, 60(1): 1-9. |
1 | Tomás R A F, Bordado J C M, Gomes J F P. p-Xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development[J]. Chemical Reviews, 2013, 113(10): 7421-7469. |
2 | Schwab F, Lucas M, Claus P. Ruthenium-catalyzed selective hydrogenation of benzene to cyclohexene in the presence of an ionic liquid[J]. Angewandte Chemie (International Ed. in English), 2011, 50(44): 10453-10456. |
3 | Lucas T, Grenier D, Bornert M, et al. Bubble growth and collapse in pre-fermented doughs during freezing, thawing and final proving[J]. Food Research International, 2010, 43(4): 1041-1048. |
4 | Kalaga D V, Ansari M, Turney D E, et al. Scale-up of a downflow bubble column: experimental investigations[J]. Chemical Engineering Journal, 2020, 386: 121447. |
5 | Parkinson L, Sedev R, Fornasiero D, et al. The terminal rise velocity of 10—100 μm diameter bubbles in water[J]. Journal of Colloid and Interface Science, 2008, 322(1): 168-172. |
6 | Tanaka S, Kastens S, Fujioka S, et al. Mass transfer from freely rising microbubbles in aqueous solutions of surfactant or salt[J]. Chemical Engineering Journal, 2020, 387: 121246. |
7 | Cuenot B, Magnaudet J, Spennato B. The effects of slightly soluble surfactants on the flow around a spherical bubble[J]. Journal of Fluid Mechanics, 1997, 339(1): 25-53. |
8 | Takemura F. Adsorption of surfactants onto the surface of a spherical rising bubble and its effect on the terminal velocity of the bubble[J]. Physics of Fluids, 2005, 17(4): 048104. |
9 | Schiller L, Nauman A. Uber die grundlegende berechnung bei der schwekraftaufbereitung[J]. Ver. Deutch Ing., 1933, 44: 318-320. |
10 | Tomiyama A. Struggle with computational bubble dynamics[J]. Multiphase Science and Technology, 1998, 10(4): 369-405. |
11 | Mei R W, Klausner J F, Lawrence C J. A note on the history force on a spherical bubble at finite Reynolds number[J]. Physics of Fluids, 1994, 6(1): 418-420. |
12 | Higbie R. The rate of absorption of a pure gas into a still liquids during a short time of exposure[J]. Trans. Am. Inst. Chem. Eng., 1935, 31: 365-389. |
13 | Frössling N. Über die verdunstung fallender tropfen (on the evaporation of falling drops)[J]. Gerlands Beiträge Geophys, 1938, 52(1): 170-215. |
14 | Griffith R M. Mass transfer from drops and bubbles[J]. Chemical Engineering Science, 1960, 12(3): 198-213. |
15 | Zhang B, Wang Z C, Luo Y, et al. A mathematical model for single CO2 bubble motion with mass transfer and surfactant adsorption/desorption in stagnant surfactant solutions[J]. Separation and Purification Technology, 2023, 308: 122888. |
16 | Zheng L Y, Zhang B, Luo Y, et al. Mass transfer dynamics of single CO2 bubbles rising in monoethanolamine solutions: experimental study and mathematical model[J]. Chemical Engineering Journal, 2023, 465: 142761. |
30 | Jimenez M, Dietrich N, Grace J R, et al. Oxygen mass transfer and hydrodynamic behaviour in wastewater: determination of local impact of surfactants by visualization techniques[J]. Water Research, 2014, 58: 111-121. |
31 | Lebrun G, Benaissa S, Le Men C, et al. Effect of surfactant lengths on gas-liquid oxygen mass transfer from a single rising bubble[J]. Chemical Engineering Science, 2022, 247: 117102. |
32 | Koide K, Hayashi T, Sumino K, et al. Mass transfer from single bubbles in aqueous solutions of surfactants[J]. Chemical Engineering Science, 1976, 31(10): 963-967. |
33 | Aoki J, Hori Y, Hayashi K, et al. Mass transfer from single carbon dioxide bubbles in alcohol aqueous solutions in vertical pipes[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1991-2001. |
[1] | 赵昂然, 韩永强, 王志鹏, 李鹏飞, 许亚伟, 佟会玲. 常温条件下赤泥同时脱硫脱硝实验研究[J]. 化工学报, 2024, 75(S1): 276-282. |
[2] | 周文博, 殷姜维, 张丹, 杨越, 于佳豪, 赵冰超. 热辐射加热下NaCl水溶液液滴蒸发过程的实验研究[J]. 化工学报, 2024, 75(S1): 85-94. |
[3] | 李焱, 郑利军, 张恩勇, 王云飞. 深水海底管道软管内部流体渗透特性模型与试验研究[J]. 化工学报, 2024, 75(S1): 118-125. |
[4] | 杨勇, 祖子轩, 李煜坤, 王东亮, 范宗良, 周怀荣. T型圆柱形微通道内CO2碱液吸收数值模拟[J]. 化工学报, 2024, 75(S1): 135-142. |
[5] | 裴蓓, 郝治斌, 徐天祥, 钟子琪, 李瑞, 贾冲, 段玉龙. 表面活性剂对含盐双流体细水雾灭火效能的影响[J]. 化工学报, 2024, 75(9): 3369-3378. |
[6] | 杨子驰, 谢冰琪, 石瑞莘, 雷虹, 陈晨, 周才金, 张吉松. 套管膜式微反应器内高效安全的气液传质-反应过程研究进展[J]. 化工学报, 2024, 75(9): 3011-3027. |
[7] | 罗欣怡, 徐强, 佘永璐, 聂腾飞, 郭烈锦. 光电分解水制氢气泡动力学特性及其传质机理研究[J]. 化工学报, 2024, 75(9): 3083-3093. |
[8] | 王冉, 王焕, 熊晓云, 关慧敏, 郑云锋, 陈彩琳, 秦玉才, 宋丽娟. FCC催化剂传质强化活性位利用效率的可视化分析[J]. 化工学报, 2024, 75(9): 3198-3209. |
[9] | 杨锦蕊, 郑宏飞, 马兴龙, 金日辉, 梁深. 两级叠置式加湿除湿海水淡化装置性能研究[J]. 化工学报, 2024, 75(7): 2446-2454. |
[10] | 霍宗伟, 牛亚宾, 潘艳秋. 油水膜分离中高黏度油滴行为研究和影响因素分析[J]. 化工学报, 2024, 75(6): 2262-2273. |
[11] | 王金山, 王世学, 朱禹. 冷却表面温差对高温质子交换膜燃料电池性能的影响[J]. 化工学报, 2024, 75(5): 2026-2035. |
[12] | 冯彬彬, 卢明佳, 黄志宏, 常译文, 崔志明. 碳载体在质子交换膜燃料电池中的应用及优化[J]. 化工学报, 2024, 75(4): 1469-1484. |
[13] | 董霄, 白志山, 杨晓勇, 殷伟, 刘宁普, 于启凡. CHPPO工艺氧化液耦合除杂技术的研究与工业应用[J]. 化工学报, 2024, 75(4): 1630-1641. |
[14] | 蒋方涛, 钱刚, 周兴贵, 段学志, 张晶. 基于[bmim][BF4]相转移催化的氟代碳酸乙烯酯高效合成[J]. 化工学报, 2024, 75(4): 1543-1551. |
[15] | 申州洋, 薛康, 刘青, 史成香, 邹吉军, 张香文, 潘伦. 吸热型纳米流体燃料研究进展[J]. 化工学报, 2024, 75(4): 1167-1182. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 261
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 102
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||