| 1 |
Adamo A, Beingessner R L, Behnam M, et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system[J]. Science, 2016, 352(6281): 61-67.
|
| 2 |
Hessel V, Kralisch D, Kockmann N, et al. Novel process windows for enabling, accelerating, and uplifting flow chemistry[J]. ChemSusChem, 2013, 6(5): 746-789.
|
| 3 |
Nghe P, Terriac E, Schneider M, et al. Microfluidics and complex fluids[J]. Lab on a Chip, 2011, 11(5): 788-794.
|
| 4 |
Hoang P H, Nguyen C T, Perumal J, et al. Droplet synthesis of well-defined block copolymers using solvent-resistant microfluidic device[J]. Lab on a Chip, 2011, 11(2): 329-335.
|
| 5 |
Liu Z D, Lu Y C, Yang B D, et al. Controllable preparation of poly(butyl acrylate) by suspension polymerization in a coaxial capillary microreactor[J]. Industrial & Engineering Chemistry Research, 2011, 50(21): 11853-11862.
|
| 6 |
Song Y, Song J N, Shang M J, et al. Hydrodynamics and mass transfer performance during the chemical oxidative polymerization of aniline in microreactors[J]. Chemical Engineering Journal, 2018, 353: 769-780.
|
| 7 |
Yang Z C, Bi Q C, Liu B, et al. Nitrogen/non-Newtonian fluid two-phase upward flow in non-circular microchannels[J]. International Journal of Multiphase Flow, 2010, 36(1): 60-70.
|
| 8 |
Fu T T, Ma Y G, Funfschilling D, et al. Gas-liquid flow stability and bubble formation in non-Newtonian fluids in microfluidic flow-focusing devices[J]. Microfluidics and Nanofluidics, 2011, 10(5): 1135-1140.
|
| 9 |
Fu T T, Ma Y G, Funfschilling D, et al. Bubble formation in non-Newtonian fluids in a microfluidic T-junction[J]. Chemical Engineering and Processing: Process Intensification, 2011, 50(4): 438-442.
|
| 10 |
Yang X H, Weldetsadik N T, Hayat Z, et al. Pressure drop of single phase flow in microchannels and its application in characterizing the apparent rheological property of fluids[J]. Microfluidics and Nanofluidics, 2019, 23(5): 75.
|
| 11 |
Musterd M, van Steijn V, Kleijn C R, et al. Calculating the volume of elongated bubbles and droplets in microchannels from a top view image[J]. RSC Advances, 2015, 5(21): 16042-16049.
|
| 12 |
Roumpea E, Chinaud M, Angeli P. Experimental investigations of non-Newtonian/Newtonian liquid-liquid flows in microchannels[J]. AIChE Journal, 2017, 63(8): 3599-3609.
|
| 13 |
Sontti S G, Atta A. CFD analysis of microfluidic droplet formation in non-Newtonian liquid[J]. Chemical Engineering Journal, 2017, 330: 245-261.
|
| 14 |
Chen Q, Li J K, Song Y, et al. Modeling of Newtonian droplet formation in power-law non-Newtonian fluids in a flow-focusing device[J]. Heat and Mass Transfer, 2020, 56(9): 2711-2723.
|
| 15 |
Rostami B, Morini G L. Experimental characterization of a micro cross-junction as generator of Newtonian and non-Newtonian droplets in silicone oil flow at low capillary numbers[J]. Experimental Thermal and Fluid Science, 2019, 103: 191-200.
|
| 16 |
杜威. 微通道内非常规流体液滴生成与界面动力学研究[D]. 天津: 天津大学, 2017.
|
|
Du W. Study on droplet formation and interfacial dynamic in unconventional fluids in microchannels[D]. Tianjin: Tianjin University, 2017.
|
| 17 |
Sun X, Zhu C Y, Fu T T, et al. Breakup dynamics of elastic droplet and stretching of polymeric filament in a T-junction[J]. Chemical Engineering Science, 2019, 206: 212-223.
|
| 18 |
Zhang Q D, Zhu C Y, Du W, et al. Formation dynamics of elastic droplets in a microfluidic T-junction[J]. Chemical Engineering Research and Design, 2018, 139: 188-196.
|
| 19 |
Lobasov A S, Minakov A V, Rudyak V Y. Flow modes of non-Newtonian fluids with power-law rheology in a T-shaped micromixer[J]. Theoretical Foundations of Chemical Engineering, 2018, 52(3): 393-403.
|
| 20 |
Yang H E, Yao G C, Wen D S. Efficient mixing enhancement by orthogonal injection of shear-thinning fluids in a micro serpentine channel at low Reynolds numbers[J]. Chemical Engineering Science, 2021, 235: 116368.
|
| 21 |
Zhao Q K, Ma H Y, Liu Y Y, et al. Hydrodynamics and mass transfer of Taylor bubbles flowing in non-Newtonian fluids in a microchannel[J]. Chemical Engineering Science, 2021, 231: 116299.
|
| 22 |
Liu Y Y, Zhao Q K, Yue J, et al. Effect of mixing on mass transfer characterization in continuous slugs and dispersed droplets in biphasic slug flow microreactors[J]. Chemical Engineering Journal, 2021, 406: 126885.
|
| 23 |
Yao C Q, Ma H Y, Zhao Q K, et al. Mass transfer in liquid-liquid Taylor flow in a microchannel: local concentration distribution, mass transfer regime and the effect of fluid viscosity[J]. Chemical Engineering Science, 2020, 223: 115734.
|
| 24 |
Yao C Q, Zhao Y C, Ma H Y, et al. Two-phase flow and mass transfer in microchannels: a review from local mechanism to global models[J]. Chemical Engineering Science, 2021, 229: 116017.
|
| 25 |
Liu Y Y, Yao C Q, Yang L X, et al. A colorimetric technique to characterize mass transfer during liquid-liquid slug flow in circular capillaries[J]. MethodsX, 2021, 8: 101346.
|
| 26 |
Liu Y Y, Yue J, Xu C, et al. Hydrodynamics and local mass transfer characterization under gas-liquid-liquid slug flow in a rectangular microchannel[J]. AIChE Journal, 2020, 66(2): e16805.
|
| 27 |
刘希明, 田玉芹, 刘伟伟, 等. 部分水解聚丙烯酰胺和聚乙烯醇混合溶液的流变性[J]. 油田化学, 2020, 37(1): 115-120.
|
|
Liu X M, Tian Y Q, Liu W W, et al. Rheological properties of partially hydrolyzed polyacrylamide and poly(vinyl alcohol) mixed solutions[J]. Oilfield Chemistry, 2020, 37(1): 115-120.
|
| 28 |
Lohse M, Alper E, Quicker G, et al. Diffusivity and solubility of carbondioxide in diluted polymer solutions[J]. AIChE Journal, 1981, 27(4): 626-631.
|
| 29 |
Yang L X, Dietrich N, Hébrard G, et al. Optical methods to investigate the enhancement factor of an oxygen-sensitive colorimetric reaction using microreactors[J]. AIChE Journal, 2017, 63(6): 2272-2284.
|
| 30 |
Roudet M, Loubiere K, Gourdon C, et al. Hydrodynamic and mass transfer in inertial gas-liquid flow regimes through straight and meandering millimetric square channels[J]. Chemical Engineering Science, 2011, 66(13): 2974-2990.
|
| 31 |
Dietrich N, Loubière K, Jimenez M, et al. A new direct technique for visualizing and measuring gas-liquid mass transfer around bubbles moving in a straight millimetric square channel[J]. Chemical Engineering Science, 2013, 100: 172-182.
|
| 32 |
Yao C Q, Zhao Y C, Chen G W. Multiphase processes with ionic liquids in microreactors: hydrodynamics, mass transfer and applications[J]. Chemical Engineering Science, 2018, 189: 340-359.
|
| 33 |
Zhao C X, Middelberg A P J. Two-phase microfluidic flows[J]. Chemical Engineering Science, 2011, 66(7): 1394-1411.
|
| 34 |
Zhang Q, Liu H C, Zhao S N, et al. Hydrodynamics and mass transfer characteristics of liquid-liquid slug flow in microchannels: the effects of temperature, fluid properties and channel size[J]. Chemical Engineering Journal, 2019, 358: 794-805.
|
| 35 |
Garstecki P, Fuerstman M J, Stone H A, et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3): 437-446.
|
| 36 |
Yao C Q, Liu Y Y, Xu C, et al. Formation of liquid-liquid slug flow in a microfluidic T-junction: effects of fluid properties and leakage flow[J]. AIChE Journal, 2018, 64(1): 346-357.
|
| 37 |
Du W, Fu T T, Duan Y F, et al. Breakup dynamics for droplet formation in shear-thinning fluids in a flow-focusing device[J]. Chemical Engineering Science, 2018, 176: 66-76.
|
| 38 |
Scheiff F, Holbach A, Agar D W. Slug flow of ionic liquids in capillary microcontactors: fluid dynamic intensification for solvent extraction[J]. Chemical Engineering & Technology, 2013, 36(6): 975-984.
|