化工学报 ›› 2025, Vol. 76 ›› Issue (2): 686-694.DOI: 10.11949/0438-1157.20241074
• 分离工程 • 上一篇
崔家馨(), 殷梦凡, 郑涛, 刘晗, 张睿, 刘植昌, 刘海燕, 徐春明, 孟祥海(
)
收稿日期:
2024-09-25
修回日期:
2024-11-04
出版日期:
2025-03-25
发布日期:
2025-03-10
通讯作者:
孟祥海
作者简介:
崔家馨(1997—),女,博士研究生,2796867498@qq.com
基金资助:
Jiaxin CUI(), Mengfan YIN, Tao ZHENG, Han LIU, Rui ZHANG, Zhichang LIU, Haiyan LIU, Chunming XU, Xianghai MENG(
)
Received:
2024-09-25
Revised:
2024-11-04
Online:
2025-03-25
Published:
2025-03-10
Contact:
Xianghai MENG
摘要:
石脑油中烯烃/烷烃的分离是石油化工过程原料优化和产品精制的需求,液液萃取是烯烃/烷烃分离的重要途径。以1-己烯/正己烷为模型化合物,探讨了铝铜双金属离子液体选择性萃取烯烃的可行性。结果表明,铝铜双金属离子液体对1-己烯/正己烷具有较好的分离性能,在剂油质量比为2、萃取温度10℃的条件下,1-己烯萃取选择性为6.33,优于常规咪唑型离子液体和传统有机溶剂。此外,铝铜双金属离子液体具有良好的重复使用性能。通过同步辐射X射线吸收精细结构光谱(XAFS)和密度泛函理论(DFT)揭示了双金属离子液体阴离子结构。利用量子化学计算手段对离子液体与1-己烯、正己烷相互作用进行计算分析,解释了双金属离子液体选择性分离1-己烯的原理。
中图分类号:
崔家馨, 殷梦凡, 郑涛, 刘晗, 张睿, 刘植昌, 刘海燕, 徐春明, 孟祥海. 铝铜双金属离子液体在1-己烯/正己烷分离中的应用[J]. 化工学报, 2025, 76(2): 686-694.
Jiaxin CUI, Mengfan YIN, Tao ZHENG, Han LIU, Rui ZHANG, Zhichang LIU, Haiyan LIU, Chunming XU, Xianghai MENG. Application of aluminum-copper bimetallic ionic liquids in 1-hexene/n-hexane separation[J]. CIESC Journal, 2025, 76(2): 686-694.
萃取剂 | S | D | PI |
---|---|---|---|
N-甲酰基吗啉 | 2.12 | 0.046 | 0.10 |
N-甲基吡咯烷酮 | 1.31 | 0.301 | 0.39 |
乙二醇 | 2.25 | 0.028 | 0.06 |
[Bmim]Cl-1.0FeCl3 | 2.40 | 0.041 | 0.10 |
[Bmim]Cl-1.0AlCl3 | 2.39 | 0.036 | 0.09 |
[Bmim]Cl-1.0CuCl [Bmim]Cl-1.5CuCl [Bmim]Cl-2.0CuCl | 2.96 4.39 6.41 | 0.034 0.034 0.039 | 0.10 0.15 0.25 |
[Bmim]NTf2 | 1.82 | 0.142 | 0.26 |
[Bmim]BF4 | 2.45 | 0.032 | 0.08 |
[Bmim]PF6 | 2.53 | 0.042 | 0.11 |
[Bmim]Cl-1.0AlCl3+[Bmim]Cl-2.0CuCl | 3.24 | 0.040 | 0.13 |
[Bmim]Cl-0.6AlCl3-1.0CuCl | 6.33 | 0.073 | 0.46 |
表1 萃取剂的烯烃分离性能
Table 1 Olefin separation performance of extractants
萃取剂 | S | D | PI |
---|---|---|---|
N-甲酰基吗啉 | 2.12 | 0.046 | 0.10 |
N-甲基吡咯烷酮 | 1.31 | 0.301 | 0.39 |
乙二醇 | 2.25 | 0.028 | 0.06 |
[Bmim]Cl-1.0FeCl3 | 2.40 | 0.041 | 0.10 |
[Bmim]Cl-1.0AlCl3 | 2.39 | 0.036 | 0.09 |
[Bmim]Cl-1.0CuCl [Bmim]Cl-1.5CuCl [Bmim]Cl-2.0CuCl | 2.96 4.39 6.41 | 0.034 0.034 0.039 | 0.10 0.15 0.25 |
[Bmim]NTf2 | 1.82 | 0.142 | 0.26 |
[Bmim]BF4 | 2.45 | 0.032 | 0.08 |
[Bmim]PF6 | 2.53 | 0.042 | 0.11 |
[Bmim]Cl-1.0AlCl3+[Bmim]Cl-2.0CuCl | 3.24 | 0.040 | 0.13 |
[Bmim]Cl-0.6AlCl3-1.0CuCl | 6.33 | 0.073 | 0.46 |
Path | N | R/Å | σ2/Å2 |
---|---|---|---|
Cu—Cl | 2.00 | 2.21 | 0.013 |
Cu—Al | 1.45 | 2.93 | 0.024 |
表2 Cu K-edge XAFS的曲线拟合参数
Table 2 Curve-fit parameters for Cu K-edge XAFS
Path | N | R/Å | σ2/Å2 |
---|---|---|---|
Cu—Cl | 2.00 | 2.21 | 0.013 |
Cu—Al | 1.45 | 2.93 | 0.024 |
图6 剂油质量比对分离选择性和萃取性能指数的影响
Fig.6 Influence of the mass ratio of solvent to feed on the separation selectivity and extraction performance index of the extraction
离子液体+1-己烯/正己烷 | ΔE/(kJ/mol) |
---|---|
[Bmim][CuCl2]+1-己烯 | -89.79 |
[Bmim][CuAlCl5]+1-己烯 | -138.08 |
[Bmim][CuCl2]+正己烷 | -24.89 |
[Bmim][CuAlCl5]+正己烷 | -19.99 |
表3 离子液体与1-己烯/正己烷之间的结合能比较
Table 3 Comparison of binding energies of ionic liquids with 1-hexene and n-hexane
离子液体+1-己烯/正己烷 | ΔE/(kJ/mol) |
---|---|
[Bmim][CuCl2]+1-己烯 | -89.79 |
[Bmim][CuAlCl5]+1-己烯 | -138.08 |
[Bmim][CuCl2]+正己烷 | -24.89 |
[Bmim][CuAlCl5]+正己烷 | -19.99 |
图10 [Bmim][AlCuCl5]、[Bmim][AlCuCl5]-1-己烯及[Bmim][AlCuCl5]-正己烷的AIM分析(球体代表原子;N:蓝色;H:白色;C:青色;Cl:绿色;Cu:橙色;Al:粉色)
Fig.10 The AIM analysis for [Bmim][AlCuCl5], [Bmim][AlCuCl5]-1-hexene and [Bmim][AlCuCl5]-n-hexane (spheres represent the atoms; N: blue; H: white; C: cyan; Cl: green; Cu: orange; Al: pink)
体系 | BCP | 原子标签 | ρ(BCP) | ∇2ρ(BCP) | H(BCP) | |
---|---|---|---|---|---|---|
[Bmim][AlCuCl5] | 1 | C—H…Cl | 0.0046 | 0.0159 | 0.0009 | |
2 | C—H…Cl | 0.0072 | 0.0241 | 0.0012 | ||
3 | C—H…Cl | 0.0077 | 0.0257 | 0.0013 | ||
4 | C—H…Cl | 0.0045 | 0.0135 | 0.0007 | ||
5 | C—H…Cl | 0.0041 | 0.0142 | 0.0008 | ||
6 | C—H…Cl | 0.0174 | 0.0532 | 0.0019 | ||
7 | C…Cl | 0.0082 | 0.0279 | 0.0013 | ||
8 | C—H…Cl | 0.0131 | 0.0397 | 0.0017 | ||
[Bmim][AlCuCl5]-1-己烯 | 9 | Cu…Cl | 0.0783 | 0.2614 | 0.0238 | |
10 | C—H…Cl | 0.0110 | 0.0328 | 0.0015 | ||
11 | C—H…Cl | 0.0217 | 0.0631 | 0.0015 | ||
12 | C…Cl | 0.0065 | 0.0239 | 0.0013 | ||
13 | C…Cl | 0.0036 | 0.0122 | 0.0008 | ||
14 | C…Cl | 0.0050 | 0.0168 | 0.0009 | ||
15 | C—H…Cl | 0.0068 | 0.0209 | 0.0010 | ||
16 | C—H…Cl | 0.0068 | 0.0232 | 0.0012 | ||
17 | C—H…Cl | 0.0077 | 0.0259 | 0.0013 | ||
18 | Cu…C | 0.0831 | 0.2393 | -0.0257 | ||
19 | Cu…Cl | 0.0463 | 0.1723 | -0.0061 | ||
20 | Cu…Cl | 0.0155 | 0.0433 | -0.0001 | ||
21 | C—H…Cl | 0.0075 | 0.0268 | 0.0014 | ||
22 | C—H…Cl | 0.0047 | 0.0152 | 0.0008 | ||
23 | C—H…Cl | 0.0027 | 0.0097 | 0.0006 | ||
[Bmim][AlCuCl5]-正己烷 | 24 | C—H…Cl | 0.0052 | 0.0156 | 0.0008 | |
25 | C—H…Cl | 0.0064 | 0.0190 | 0.0009 | ||
26 | Cu…H | 0.0134 | 0.0337 | -0.0004 | ||
27 | Cu…Cl | 0.0145 | 0.0354 | -0.0003 | ||
28 | C—H…Cl | 0.0034 | 0.0110 | 0.0006 | ||
29 | C—H…Cl | 0.0176 | 0.0538 | 0.0019 | ||
30 | C—H…Cl | 0.0124 | 0.0376 | 0.0016 | ||
31 | C—H…Cl | 0.0049 | 0.0168 | 0.0010 | ||
32 | C—H…Cl | 0.0076 | 0.0257 | 0.0013 | ||
33 | C—H…Cl | 0.0041 | 0.0148 | 0.0009 | ||
34 | C—N…Cl | 0.0077 | 0.0269 | 0.0013 | ||
35 | C—H…Cl | 0.0038 | 0.0116 | 0.0006 | ||
36 | C—H…Cl | 0.0041 | 0.0143 | 0.0009 |
表4 BCPs拓扑性质
Table 4 Topological properties of BCPs
体系 | BCP | 原子标签 | ρ(BCP) | ∇2ρ(BCP) | H(BCP) | |
---|---|---|---|---|---|---|
[Bmim][AlCuCl5] | 1 | C—H…Cl | 0.0046 | 0.0159 | 0.0009 | |
2 | C—H…Cl | 0.0072 | 0.0241 | 0.0012 | ||
3 | C—H…Cl | 0.0077 | 0.0257 | 0.0013 | ||
4 | C—H…Cl | 0.0045 | 0.0135 | 0.0007 | ||
5 | C—H…Cl | 0.0041 | 0.0142 | 0.0008 | ||
6 | C—H…Cl | 0.0174 | 0.0532 | 0.0019 | ||
7 | C…Cl | 0.0082 | 0.0279 | 0.0013 | ||
8 | C—H…Cl | 0.0131 | 0.0397 | 0.0017 | ||
[Bmim][AlCuCl5]-1-己烯 | 9 | Cu…Cl | 0.0783 | 0.2614 | 0.0238 | |
10 | C—H…Cl | 0.0110 | 0.0328 | 0.0015 | ||
11 | C—H…Cl | 0.0217 | 0.0631 | 0.0015 | ||
12 | C…Cl | 0.0065 | 0.0239 | 0.0013 | ||
13 | C…Cl | 0.0036 | 0.0122 | 0.0008 | ||
14 | C…Cl | 0.0050 | 0.0168 | 0.0009 | ||
15 | C—H…Cl | 0.0068 | 0.0209 | 0.0010 | ||
16 | C—H…Cl | 0.0068 | 0.0232 | 0.0012 | ||
17 | C—H…Cl | 0.0077 | 0.0259 | 0.0013 | ||
18 | Cu…C | 0.0831 | 0.2393 | -0.0257 | ||
19 | Cu…Cl | 0.0463 | 0.1723 | -0.0061 | ||
20 | Cu…Cl | 0.0155 | 0.0433 | -0.0001 | ||
21 | C—H…Cl | 0.0075 | 0.0268 | 0.0014 | ||
22 | C—H…Cl | 0.0047 | 0.0152 | 0.0008 | ||
23 | C—H…Cl | 0.0027 | 0.0097 | 0.0006 | ||
[Bmim][AlCuCl5]-正己烷 | 24 | C—H…Cl | 0.0052 | 0.0156 | 0.0008 | |
25 | C—H…Cl | 0.0064 | 0.0190 | 0.0009 | ||
26 | Cu…H | 0.0134 | 0.0337 | -0.0004 | ||
27 | Cu…Cl | 0.0145 | 0.0354 | -0.0003 | ||
28 | C—H…Cl | 0.0034 | 0.0110 | 0.0006 | ||
29 | C—H…Cl | 0.0176 | 0.0538 | 0.0019 | ||
30 | C—H…Cl | 0.0124 | 0.0376 | 0.0016 | ||
31 | C—H…Cl | 0.0049 | 0.0168 | 0.0010 | ||
32 | C—H…Cl | 0.0076 | 0.0257 | 0.0013 | ||
33 | C—H…Cl | 0.0041 | 0.0148 | 0.0009 | ||
34 | C—N…Cl | 0.0077 | 0.0269 | 0.0013 | ||
35 | C—H…Cl | 0.0038 | 0.0116 | 0.0006 | ||
36 | C—H…Cl | 0.0041 | 0.0143 | 0.0009 |
1 | 石博文, 朱楠, 海红莲, 等. 煤制油费托α-烯烃增值利用及发展展望[J]. 合成材料老化与应用, 2023, 52(5): 113-116. |
Shi B W, Zhu N, Hai H L, et al. Value-added utilization and development prospect of Fischer-α-olefin from coal to oil[J]. Synthetic Materials Aging and Application, 2023, 52(5): 113-116. | |
2 | 白玫. ACO技术制备烯烃工艺研究及展望[J]. 化工与医药工程, 2017, 38(3): 18-23. |
Bai M. Research of ACO technique used in preparation of olefins and expectation[J]. Chemical and Pharmaceutical Engineering, 2017, 38(3): 18-23. | |
3 | Lin Y H, Yu L, Ullah S, et al. Temperature-programmed separation of hexane isomers by a porous calcium chloranilate metal-organic framework[J]. Angewandte Chemie International Edition, 2022, 61(50): e202214060. |
4 | Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
5 | Zhu L, Li F F, Zhu J Q, et al. Liquid-liquid equilibria of ternary systems of 1-hexene/hexane and extraction solvents[J]. Chemical Papers, 2016, 70(5): 585-593. |
6 | 容凡丁, 丁泽相, 曹义风, 等. 离子液体强化不饱和键差异化合物分离的研究进展[J]. 化工进展, 2024, 43(1): 198-214. |
Rong F D, Ding Z X, Cao Y F, et al. Progress in enhanced separation of compounds differing in unsaturated bonds by ionic liquids[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 198-214. | |
7 | 吴沛文, 荀苏杭, 蒋伟, 等. 离子液体反应型萃取燃油脱硫研究进展[J]. 化工学报, 2021, 72(1): 276-291. |
Wu P W, Xun S H, Jiang W, et al. Recent progress on extractive desulfurization of fuel oils through reactions based on ionic liquids as solvents and catalysts[J]. CIESC Journal, 2021, 72(1): 276-291. | |
8 | 吕玉苗, 陈伟, 王艳磊, 等. 离子液体二维结构制备及其特性研究进展[J]. 化学学报, 2021, 79(4): 443-458. |
Lyu Y M, Chen W, Wang Y L, et al. Research progress on the preparation and properties of two dimensional structure of ionic liquids[J]. Acta Chimica Sinica, 2021, 79(4): 443-458. | |
9 | 李瑞, 崔现宝, 吴添, 等. 基于COSMO-SAC模型的离子液体萃取剂的选择[J]. 化工学报, 2013, 64(2): 452-469. |
Li R, Cui X B, Wu T, et al. Selection of ionic liquid solvent for liquid-liquid extraction based on COSMO-SAC model[J]. CIESC Journal, 2013, 64(2): 452-469. | |
10 | Xing H B, Zhao X, Li R L, et al. Improved efficiency of ethylene/ethane separation using a symmetrical dual nitrile-functionalized ionic liquid[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(11): 1357-1363. |
11 | Wang Y, Hao W Y, Jacquemin J, et al. Enhancing liquid-phase olefin-paraffin separations using novel silver-based ionic liquids[J]. Journal of Chemical & Engineering Data, 2015, 60(1): 28-36. |
12 | Li H, Zhang Z S, Sun G L, et al. Performance and mechanism of the separation of C8 α-olefin from F-T synthesis products using novel Ag-DES[J]. AIChE Journal, 2021, 67(8): e17252. |
13 | Yu G R, Deng L Y, Abdeltawab A A, et al. Functional solution composed of Cu(Ⅰ) salt and ionic liquids to separate propylene from propane[J]. Industrial & Engineering Chemistry Research, 2014, 53(34): 13430-13435. |
14 | Yu G R, Zhang L, Alhumaydhi I A, et al. Separation of propylene and propane by alkylimidazolium thiocyanate ionic liquids with Cu+ salt[J]. Separation and Purification Technology, 2015, 156: 356-362. |
15 | 张睿, 董淑媛, 伍洛, 等. 小分子烷烃与烯烃在离子液体中的溶解性能[J]. 化工学报, 2020, 71(10): 4674-4687. |
Zhang R, Dong S Y, Wu L, et al. Solubility of light alkanes and alkenes in ionic liquids[J]. CIESC Journal, 2020, 71(10): 4674-4687. | |
16 | Chen X C, Ming S M, Wu X Y, et al. Cu(Ⅰ)-based ionic liquids as potential absorbents to separate propylene and propane[J]. Separation Science and Technology, 2013, 48(15): 2317-2323. |
17 | Wentink A E, Kockmann D, Kuipers N J M, et al. Effect of C6-olefin isomers on π-complexation for purification of 1-hexene by reactive extractive distillation[J]. Separation and Purification Technology, 2005, 43(2): 149-162. |
18 | Capracotta M D, Sullivan R M, Martin J D. Sorptive reconstruction of CuMCl4 (M = Al and Ga) upon small-molecule binding and the competitive binding of CO and ethylene[J]. Journal of the American Chemical Society, 2006, 128(41): 13463-13473. |
19 | Anantharaj R, Banerjee T. COSMO-RS-based screening of ionic liquids as green solvents in denitrification studies[J]. Industrial & Engineering Chemistry Research, 2010, 49(18): 8705-8725. |
20 | Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: the PBE0 model[J]. Journal of Chemical Physics, 1999, 110(13): 6158-6170. |
21 | Neese F. Software update: the ORCA program system, version 4.0[J]. WIREs Computational Molecular Science, 2018, 8(1): e1327. |
22 | Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory[J]. Journal of Computational Chemistry, 2011, 32(7): 1456-1465. |
23 | Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104. |
24 | 倪清, 来锦波, 彭东岳, 等. 离子液体萃取分离烃类化合物的研究进展[J]. 化工进展, 2022, 41(2): 619-627. |
Ni Q, Lai J B, Peng D Y, et al. Progress in extraction separation of hydrocarbons by ionic liquids[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 619-627. | |
25 | Sasaki T, Tada M, Zhong C M, et al. Immobilized metal ion-containing ionic liquids: preparation, structure and catalytic performances in kharasch addition reaction and suzuki cross-coupling reactions[J]. Journal of Molecular Catalysis A: Chemical, 2008, 279(2): 200-209. |
26 | Fulton J L, Hoffmann M M, Darab J G. An X-ray absorption fine structure study of copper(Ⅰ) chloride coordination structure in water up to 325℃[J]. Chemical Physics Letters, 2000, 330(3/4): 300-308. |
27 | Schäafer H, Binnewies M, Laumanns R, et al. CuAl2Cl8. Darstellung und kristallstruktur[J]. Zeitschrift Für Anorganische und Allgemeine Chemie, 1980, 461(1): 31-34. |
28 | Safarik D J, Eldridge R B. Olefin/paraffin separations by reactive absorption: a review[J]. Industrial & Engineering Chemistry Research, 1998, 37(7): 2571-2581. |
29 | Bader R F W. Atoms in molecules[J]. Accounts of Chemical Research, 1985, 18(1): 9-15. |
30 | Lipkowski P, Grabowski S J, Robinson T L, et al. Properties of the C—H…H dihydrogen bond: an ab initio and topological analysis[J]. The Journal of Physical Chemistry A, 2004, 108(49): 10865-10872. |
31 | Cremer D, Kraka E. Chemical bonds without bonding electron density—Does the difference electron-density analysis suffice for a description of the chemical bond?[J]. Angewandte Chemie International Edition in English, 1984, 23(8): 627-628. |
[1] | 冯海军, 章冰璇, 周健. 图神经网络模型预测和解释离子液体毒性的研究[J]. 化工学报, 2025, 76(1): 93-106. |
[2] | 李匡奚, 于佩潜, 王江云, 魏浩然, 郑志刚, 冯留海. 微气泡旋流气浮装置内流动分析与结构优化[J]. 化工学报, 2024, 75(S1): 223-234. |
[3] | 谢慧慧, 姜佳鑫, 王鑫, 李正, 郭鑫, 吕欣然, 王凌云, 刘杨. 深共晶溶剂聚合物包覆膜传输分离铂、钯的研究[J]. 化工学报, 2024, 75(S1): 235-243. |
[4] | 邱知, 谭明. 聚离子液体膜的制备及其在低钠高钾健康酱油中的应用[J]. 化工学报, 2024, 75(S1): 244-250. |
[5] | 刘律, 刘洁茹, 范亮亮, 赵亮. 基于层流效应的被动式颗粒分离微流控方法研究[J]. 化工学报, 2024, 75(S1): 67-75. |
[6] | 唐昊, 胡定华, 李强, 张轩畅, 韩俊杰. 抗加速度双切线弧流道内气泡动力学行为数值与可视化研究[J]. 化工学报, 2024, 75(9): 3074-3082. |
[7] | 李彦熹, 王晔春, 谢向东, 王进芝, 王江, 周煜, 潘盈秀, 丁文涛, 郭烈锦. 蜗壳式多通道气液旋流分离器结构优化及分离特性研究[J]. 化工学报, 2024, 75(8): 2875-2885. |
[8] | 罗小平, 侯云天, 范一杰. 逆流相分离结构微细通道流动沸腾传热与均温性[J]. 化工学报, 2024, 75(7): 2474-2485. |
[9] | 张颂红, 赵欣怡, 楼小玲, 沈绍传, 贠军贤. 阳离子交换纳晶胶分离乳过氧化物酶的研究[J]. 化工学报, 2024, 75(7): 2574-2582. |
[10] | 秦晓巧, 谭宏博, 温娜. 储能式低温空分系统热力学与经济性分析[J]. 化工学报, 2024, 75(7): 2409-2421. |
[11] | 杜海燕, 朱凯, 游峰, 王金凤, 赵一帆, 张楠, 李英. 用于应变传感器的自愈合抗冻离子水凝胶[J]. 化工学报, 2024, 75(7): 2709-2722. |
[12] | 周文轩, 刘珍, 张福建, 张忠强. 高通量-高截留率时间维度膜法水处理机理研究[J]. 化工学报, 2024, 75(7): 2583-2593. |
[13] | 张香港, 常玉龙, 汪华林, 江霞. 废弃秸秆等生物质低能耗非相变秒级干燥[J]. 化工学报, 2024, 75(7): 2433-2445. |
[14] | 张广宇, 付然飞, 孙冰, 袁俊聪, 冯翔, 杨朝合, 徐伟. CO2-环氧丙烷合成碳酸丙烯酯:氢键供体效应研究[J]. 化工学报, 2024, 75(6): 2243-2251. |
[15] | 霍宗伟, 牛亚宾, 潘艳秋. 油水膜分离中高黏度油滴行为研究和影响因素分析[J]. 化工学报, 2024, 75(6): 2262-2273. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 24
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||