化工学报

• •    

高温高盐环境下单烃链和双烃链表面活性剂对油水界面性质影响的微观机理研究

刘峰1(), 韩春硕1, 张益1(), 刘彦成2(), 郁林军3, 申家伟1, 高晓泉1, 杨凯1   

  1. 1.西安石油大学石油工程学院,陕西 西安 710065
    2.中联煤层气有限责任公司生产支持中心,北京 100015
    3.中国石油长庆油田分公司第十二采油厂,甘肃 庆阳 745400
  • 收稿日期:2024-10-29 修回日期:2025-01-02 出版日期:2025-01-03
  • 通讯作者: 张益,刘彦成
  • 作者简介:刘峰(1984—),男,博士,副教授,xsyuliufeng@163.com
  • 基金资助:
    国家自然科学基金面上项目(52074226)

Micro-mechanism study on the effect of single and double hydrocarbon chain surfactants on oil-water interface properties under high temperature and high salt reservoir

Feng LIU1(), Chunshuo HAN1, Yi ZHANG1(), Yancheng LIU2(), Linjun YU3, Jiawei SHEN1, Xiaoquan GAO1, Kai YANG1   

  1. 1.College of Petroleum Engineering,Xi’an Shiyou University,Xi’an 710065,Shaanxi,China
    2.Production and Support Center,China United Coalbed Methane Corporation Ltd. ,Beijing 100015,China
    3.No. 12 Oil Production Plant,Changqing Oilfield Company,CNPC,Qingyang 745400,Gansu,China
  • Received:2024-10-29 Revised:2025-01-02 Online:2025-01-03
  • Contact: Yi ZHANG, Yancheng LIU

摘要:

表面活性剂对油水界面性质具有重要影响,高温高盐油藏环境严重影响表面活性剂的界面化学特性和驱油效果。为研究不同表面活性剂结构对油水界面性质的影响。采用分子动力学模拟方法研究了阴离子表面活性剂十二烷基硫酸钠(SDS)和进行基团修饰的表面活性剂SDS-B在油水界面上的微观行为和作用机理。结果表明,在SDS表面活性剂的疏水尾链中引入链烷烃,改变了表面活性剂分子在油水界面的排列方式,相较于单烃链表面活性剂,双烃链结构使表面活性剂在高温高盐环境下依旧能紧密垂直于油水界面,SDS-B具有良好的分子界面行为。同时,链烷烃基团数目的增加导致SDS分子表现出轻微的弯曲,使表面活性剂分子形成多处聚集体,有利于形成多层吸附。SDS-B头基对Ca2+的排斥作用明显强于SDS,径向分布函数第一峰值降低0.89,且SDS-B在Ca2+环境下的油水界面厚度较SDS得到改善,厚度从11.3Å升高到15.2Å,显著增强了界面稳定性,表明烃链的引入提高了表面活性剂的抗Ca2+盐特性。SDS-B头基易与烃链基团形成分子内氢键结构,头基水化能力提高,盐水中的阳离子受到较大的束缚力,Ca2+、Mg2+、Na+扩散系数分别降低了0.027×10-4cm2/s、0.065×10-4cm2/s、0.064×10-4cm2/s。在复杂盐环境及更高离子浓度下SDS-B头基亲水性及界面行为均优于SDS。该研究对三次采油中新型表面活性剂的设计具有重要指导意义。

关键词: 表面活性剂, 烃链, 耐盐性, 分子动力学,油水界面, 模拟。

Abstract:

Surfactants have an important influence on the properties of oil-water interface. The environment of high temperature and high salinity reservoir seriously affects the interfacial chemical properties and oil displacement effect of surfactants. In order to study the effect of different surfactant structures on the properties of oil-water interface. The microscopic behavior and mechanism of anionic surfactant sodium dodecyl sulfate (SDS) and group-modified surfactant SDS-B at the oil-water interface were studied by molecular dynamics simulation. The results show that the introduction of alkane in the hydrophobic tail chain of SDS surfactant changes the arrangement of surfactant molecules at the oil-water interface. Compared with the single hydrocarbon chain surfactant, the double hydrocarbon chain structure makes the surfactant still closely perpendicular to the oil-water interface under high temperature and high salt environment, and SDS-B has good molecular interface behavior. At the same time, the increase in the number of alkane groups leads to a slight bending of the SDS molecules, which makes the surfactant molecules form multiple aggregates, which is conducive to the formation of multi-layer adsorption. The repulsive effect of SDS-B head group on Ca2+ was significantly stronger than that of SDS, and the first peak value of radial distribution function decreased by 0.89. The oil-water interface thickness of SDS-B in Ca2+ environment was improved compared with that of SDS, and the thickness increased from 11.3Å to 15.2Å, which significantly enhanced the interface stability, indicating that the introduction of hydrocarbon chain improved the Ca2+ salt resistance of surfactants. The head group of SDS-B is easy to form an intramolecular hydrogen bond structure with the hydrocarbon chain group, and the hydration ability of the head group is improved. The cations in the brine are greatly bound. The diffusion coefficients of Ca2+, Mg2+ and Na+ are reduced by 0.027×10-4cm2/s, 0.065×10-4cm2/s and 0.064×10-4cm2/s, respectively. The hydrophilic and interfacial behavior of SDS-B headgroups is superior to that of SDS in complex salt environments and higher ionic concentrations. This study has important guiding significance for the design of new surfactants in tertiary oil recovery.

Key words: surfactant, hydrocarbon chain, salt resistance, molecular dynamics, oil-water interface, simulation

中图分类号: