化工学报 ›› 2025, Vol. 76 ›› Issue (12): 6527-6535.DOI: 10.11949/0438-1157.20250419
蒋子冰1(
), 徐秀彬1(
), 肖创洪1,2, 刘健伟1, 韦林洁1, 吴旭1(
)
收稿日期:2025-04-20
修回日期:2025-05-10
出版日期:2025-12-31
发布日期:2026-01-23
通讯作者:
徐秀彬,吴旭
作者简介:蒋子冰(2000—),男,硕士研究生,1365626529@qq.com
基金资助:
Zibing JIANG1(
), Xiubin XU1(
), Chuanghong XIAO1,2, Jianwei LIU1, Linjie WEI1, Xu WU1(
)
Received:2025-04-20
Revised:2025-05-10
Online:2025-12-31
Published:2026-01-23
Contact:
Xiubin XU, Xu WU
摘要:
设计了一种半油性液体凝胶(HOLH)。HOLH中的硅油分子可从乳液微滴中逸出,并在光固化聚合凝胶后,自由渗入含有两亲性可交联有机聚硅氧烷的水凝胶基质中。这种乳液凝胶通过均匀分布的不混溶且可移动的硅油分子,实现了类油脂分泌功能及表面润滑层,与传统水凝胶相比,HOLH表现出更低的水分蒸发率(空气中暴露7 d,相对质量从45%提升至75%左右)和优异的液体排斥性(滑动角<10°),可有效阻隔水、油类及血液等复杂液体。此外,乳液凝胶骨架中分散的聚苯胺纳米粒子赋予HOLH优异的压敏性,使其兼具抗污性能与传感功能。该策略为调控水凝胶组分与硅油分子相互作用、设计界面功能及仿生材料提供了新思路。
中图分类号:
蒋子冰, 徐秀彬, 肖创洪, 刘健伟, 韦林洁, 吴旭. 硅基乳液凝胶的制备及应用[J]. 化工学报, 2025, 76(12): 6527-6535.
Zibing JIANG, Xiubin XU, Chuanghong XIAO, Jianwei LIU, Linjie WEI, Xu WU. Research and application of silicone-based emulsion hydrogel[J]. CIESC Journal, 2025, 76(12): 6527-6535.
图1 两亲性可交联有机硅氧烷的设计与合成(a);凝胶形成过程的明场图像(b)和共聚焦激光扫描显微镜(CLSM)图像(c);CLSM图像显示乳液[(d)、(e)]和HOLH[(f)、(g)]的结构
Fig.1 Design and synthesis of amphiphilic cross-linkable organic polysiloxanes (a);Bright-field images of the gel formation process (b) and confocal laser scanning microscopy (CLSM) images (c);CLSM images show the structures of the emulsion [(d),(e)] and HOLH [(f),(g)]
图2 HOLH制备及结构示意图(a);HOLH截面的 EDX 元素分布(b);HOLH截面结构的CLSM 图像(c)
Fig.2 Schematic illustration of the preparation and structure of HOLH (a); EDX elemental mapping of cross-sections of HOLH (b); CLSM images showing the cross-section structures of HOLH (c)
图3 固相水凝胶(a)和HOLH(b)在空气中、水中和硅油中放置7 d后的照片;固相水凝胶和HOLH的透光率(c);固相水凝胶和HOLH在空气中、水中和硅油中暴露不同时间后的质量变化(d)
Fig.3 Photographs of solid hydrogel (a) and HOLH (b) stayed in air, water, and silicon oil for 7 d; The transmittance of solid hydrogel and HOLH (c);Time profile of change in mass of the solid hydrogel and HOLH after exposure in air, water, and silicon oil for various periods (d)
图4 水、十六烷、食用油、泵油、原油、氢氧化钠溶液、盐酸溶液、大肠杆菌悬浮液、指纹液体、牛血清白蛋白溶液、血液和酱油在HOLH表面上的接触角(体积为2 µl)和滑动角(体积为20 µl)(a);液体(20 µl)从表面滑落的视频截图(b)
Fig.4 Contact angles(2 μl in volume) and sliding angles (20 μl) of water, hexadecane, cooking oil, pump oil, crude oil, NaOH, HCl, E. coli, FP liquid, BSA solution, blood and soy sauce on the HOLH surfaces(a); Video Screenshot of 20 μl liquids sliding off the surfaces(b)
图5 按下传感HOLH时灯泡亮度的变化(a);传感HOLH的力学性能(b);传感HOLH的加载 - 卸载压缩测试(c);在 50% 压缩率下进行超过 100 次循环的传感HOLH循环压缩曲线(d);在 50% 压缩率下进行超过 100 次循环的传感HOLH相对电阻变化(e);传感HOLH在压缩下的相对电阻变化(f);应力-应变曲线以及测量最小弯曲半径时拍摄的照片(g);在弯曲下的相对电阻变化(h)
Fig.5 The change in brightness of the bulb when pressing the sensor HOLH (a); The mechanical properties of the sensor HOLH (b); The loading-unloading compression test of the sensor HOLH (c); The cyclic compression curve of the sensor HOLH for more than 100 cycles at a compression rate of 50% (d); The relative resistance change of the sensor HOLH for more than 100 cycles at a compression rate of 50% (e); The relative resistance change of the sensor HOLH under compression (f); The stress-strain curve and the photo taken when measuring the minimum bending radius (g); The relative resistance change under bending (h)
| [1] | Yang C H, Suo Z G. Hydrogel ionotronics[J]. Nature Reviews Materials, 2018, 3(6): 125-142. |
| [2] | Larson C, Peele B, Li S, et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing[J]. Science, 2016, 351(6277): 1071-1074. |
| [3] | Zhang C H, Zhao Y S. Flexible photonic materials and devices: synthetic strategies, sensing properties, and wearable applications[J]. Advanced Materials, 2024: 2415856. |
| [4] | Aliev A E, Oh J, Kozlov M E, et al. Giant-stroke, superelastic carbon nanotube aerogel muscles[J]. Science, 2009, 323(5921): 1575-1578. |
| [5] | 杜海燕, 朱凯, 游峰, 等. 用于应变传感器的自愈合抗冻离子水凝胶[J]. 化工学报, 2024, 75(7): 2709-2722. |
| Du H Y, Zhu K, You F, et al. Self-healing anti-freezing ionic hydrogel for strain sensors[J]. CIESC Journal, 2024, 75(7): 2709-2722. | |
| [6] | Huang Y C, Zhu T, Yuan H X, et al. An in situ encapsulation strategy for enhancing the stability of hydrogels in both air and water through surface-confined copolymerization[J]. Chemical Engineering Journal, 2024, 485: 149847. |
| [7] | Bai Y Y, Chen B H, Xiang F, et al. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt[J]. Applied Physics Letters, 2014, 105(15): 151903. |
| [8] | Gao W C, Chang J, Li X P, et al. A quenched double-hydrophilic coating for the enhancement of water retention of hydrogels[J]. Advanced Functional Materials, 2023, 33(31): 2303306. |
| [9] | An H, Zhang M, Huang Z, et al. Hydrophobic cross-linked chains regulate high wet tissue adhesion hydrogel with toughness, anti-hydration for dynamic tissue repair[J]. Advanced Materials, 2024, 36(8): 2310164. |
| [10] | Yuan H X, Zhu T, Huang Y C, et al. Hydrophobic and adhesive elastomer encapsulation for anti-drying, non-swelling, and adhesive hydrogels[J]. Advanced Functional Materials, 2024, 34(51): 2409703. |
| [11] | 林典, 江国梅, 徐秀彬, 等. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
| Lin D, Jiang G M, Xu X B, et al. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings[J]. CIESC Journal, 2023, 74(8): 3438-3445. | |
| [12] | Amini S, Kolle S, Petrone L, et al. Preventing mussel adhesion using lubricant-infused materials[J]. Science, 2017, 357(6352): 668-673. |
| [13] | Wong T S, Kang S H, Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447. |
| [14] | Rabnawaz M, Liu G J, Hu H. Fluorine-free anti-smudge polyurethane coatings[J]. Angewandte Chemie, 2015, 127(43): 12913-12918. |
| [15] | Cui J X, Daniel D, Grinthal A, et al. Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing[J]. Nature Materials, 2015, 14(8): 790-795. |
| [16] | Zhao S D, Wu L M, Zhou S X. Nano silicone oil pools with wear-responsive secretion for enhancing self-healing in hard anti-smudge coatings[J]. Chemical Engineering Journal, 2024, 501: 157731. |
| [17] | El-Nahhal I M, El-Ashgar N M. A review on polysiloxane-immobilized ligand systems: synthesis, characterization and applications[J]. Journal of Organometallic Chemistry, 2007, 692(14): 2861-2886. |
| [18] | Pandarus V, Ciriminna R, Gingras G, et al. Waste-free and efficient hydrosilylation of olefins[J]. Green Chemistry, 2019, 21(1): 129-140. |
| [19] | Xu J Y, Han S S. The polyetherification modified reaction on silicone oil[J]. Advanced Materials Research, 2012, 560/561: 667-671. |
| [20] | Xue L, Wang D X, Yang Z Z, et al. Facile, versatile and efficient synthesis of functional polysiloxanes via thiol-ene chemistry[J]. European Polymer Journal, 2013, 49(5): 1050-1056. |
| [21] | Wu X, Yu D F, Yang H, et al. Self-assembly phenomena of the brush-like amphiphilic organopolysiloxanes in aqueous solution[J]. Polymers for Advanced Technologies, 2014, 25(10): 1175-1180. |
| [22] | Zhao H X, Sun Q Q, Deng X, et al. Earthworm-inspired rough polymer coatings with self-replenishing lubrication for adaptive friction-reduction and antifouling surfaces[J]. Advanced Materials, 2018, 30(29): 1802141. |
| [23] | Wang L, Li B Q, Xu F, et al. UV-crosslinkable and thermo-responsive chitosan hybrid hydrogel for NIR-triggered localized on-demand drug delivery[J]. Carbohydrate Polymers, 2017, 174: 904-914. |
| [24] | Szaloki M, Gall J, Bukovinszki K, et al. Synthesis and characterization of cross-linked polymeric nanoparticles and their composites for reinforcement of photocurable dental resin[J]. Reactive and Functional Polymers, 2013, 73(3): 465-473. |
| [25] | Guterman R, Gillies E R, Ragogna P J. Kinetically controlled patterning of highly cross-linked phosphonium photopolymers using simple anion exchange[J]. Langmuir, 2015, 31(18): 5181-5189. |
| [26] | Hughes T, Simon G P, Saito K. Chemistries and capabilities of photo-formable and photoreversible crosslinked polymer networks[J]. Materials Horizons, 2019, 6(9): 1762-1773. |
| [27] | Liu H, Huang Y W, Zhang Y D, et al. A UV-curable silicone acrylate anti-smudge coating containing tertiary amines and Ti with the ability to prevent oxygen inhibition[J]. Progress in Organic Coatings, 2024, 195: 108686. |
| [28] | Howell C, Grinthal A, Sunny S, et al. Designing liquid-infused surfaces for medical applications: a review[J]. Advanced Materials, 2018, 30(50): 1802724. |
| [29] | Wang L J, Mutch K J, Eastoe J, et al. Nanoemulsions prepared by a two-step low-energy process[J]. Langmuir, 2008, 24(12): 6092-6099. |
| [30] | Jing J H, Li X J, Zhang Y, et al. pH-responsive regulation of a surfactant-free microemulsion based on hydrophobic deep eutectic solvents[J]. Langmuir, 2022, 38(26): 7898-7905. |
| [31] | Cao C Y, Hou C S, Wang X, et al. Liquid metal-enhanced highly adhesive electrodes for multifunctional epidermal bioelectronics[J]. Advanced Functional Materials, 2024, 34(40): 2403671. |
| [32] | Xu X B, Chen Y T, Li Y L, et al. Dynamic silicone hydrogel gauze coatings with dual anti-blood adhesion mechanism for rapid hemostasis and minimal secondary damage[J]. Science Advances, 2024, 10(49): ado4944. |
| [33] | Badv M, Weitz J I, Didar T F. Lubricant-infused PET grafts with built-In biofunctional nanoprobes attenuate thrombin generation and promote targeted binding of cells[J]. Small, 2019, 15(51): 1905562. |
| [34] | Gao X F, Jiang L. Water-repellent legs of water striders[J]. Nature, 2004, 432: 36. |
| [35] | Gao X, Yan X, Yao X, et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J]. Advanced Materials, 2007, 19(17): 2213-2217. |
| [36] | Epstein A K, Pokroy B, Seminara A, et al. Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(3): 995-1000. |
| [37] | Tuteja A, Choi W, Ma M L, et al. Designing superoleophobic surfaces[J]. Science, 2007, 318(5856): 1618-1622. |
| [38] | Tuteja A, Choi W, Mabry J M, et al. Robust omniphobic surfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(47): 18200-18205. |
| [39] | Ahuja A, Taylor J A, Lifton V, et al. Nanonails: a simple geometrical approach to electrically tunable superlyophobic surfaces[J]. Langmuir, 2008, 24(1): 9-14. |
| [40] | Li Y, Li L, Sun J Q. Bioinspired self-healing superhydrophobic coatings[J]. Angewandte Chemie International Edition, 2010, 49(35): 6129-6133. |
| [41] | Yao X, Dunn S S, Kim P, et al. Fluorogel elastomers with tunable transparency, elasticity, shape-memory, and antifouling properties[J]. Angewandte Chemie International Edition, 2014, 53(17): 4418-4422. |
| [42] | 杨琴, 秦传鉴, 李明梓, 等. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
| Yang Q, Qin C J, Li M Z, et al. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor[J]. CIESC Journal, 2023, 74(6): 2699-2707. |
| [1] | 赵维, 邢文乐, 韩朝旭, 袁兴中, 蒋龙波. g-C3N4基非金属异质结光催化降解水中有机污染物的研究进展[J]. 化工学报, 2025, 76(9): 4752-4769. |
| [2] | 刘卓龙, 甘云华, 屈可扬, 陈宁光, 潘铭晖. 均匀电场对生物柴油小尺度射流扩散燃烧特性影响研究[J]. 化工学报, 2025, 76(9): 4800-4808. |
| [3] | 李相海, 赖德林, 孔纲, 周健. 双仿生表面水下疏油协同机制的分子动力学模拟研究[J]. 化工学报, 2025, 76(9): 4551-4562. |
| [4] | 叶鑫煌, 薛嘉豪, 赵玉来. 可聚型Gemini表面活性剂的制备、表征及其稳定高内相乳液的研究[J]. 化工学报, 2025, 76(8): 4331-4340. |
| [5] | 王御风, 罗小雪, 范鸿亮, 吴白婧, 李存璞, 魏子栋. 耦合电解水制氢的绿色有机电合成——电极界面调控策略综述[J]. 化工学报, 2025, 76(8): 3753-3771. |
| [6] | 郭铮铮, 赵一丹, 王辅强, 裴璐, 靳彦岭, 任芳, 任鹏刚. 异质结构MoS2/RGO/NiFe2O4复合材料的构筑及电磁波吸收性能研究[J]. 化工学报, 2025, 76(7): 3719-3732. |
| [7] | 郭梁, 陈烨, 贾启明, 谢秀娟. 液氦贮罐的自增压理论模拟及实验研究[J]. 化工学报, 2025, 76(7): 3561-3571. |
| [8] | 刘峰, 韩春硕, 张益, 刘彦成, 郁林军, 申家伟, 高晓泉, 杨凯. 高温高盐环境下单烃链和双烃链表面活性剂对油水界面性质影响的微观机理研究[J]. 化工学报, 2025, 76(6): 2939-2957. |
| [9] | 李长宇, 曾强, 肖杰, 张阳杰, 张政, 林元华. PVDF对LATP基固态电解质膜界面修饰研究[J]. 化工学报, 2025, 76(6): 2974-2982. |
| [10] | 范佳媛, 曾文慧, 任志超, 张文涛, 吕霜. 多熔点相变乳液的制备及性能强化研究[J]. 化工学报, 2025, 76(4): 1863-1874. |
| [11] | 徐桂培, 孙倩, 赖洁文, 卢毅锋, 邸会芳, 黄辉, 王振兵. 电化学双电层电容器失效机理的研究进展[J]. 化工学报, 2025, 76(3): 951-962. |
| [12] | 王三龙, 王跃霖, 曹宇. 基于相异质结的高效无机钙钛矿太阳能电池的性能研究[J]. 化工学报, 2025, 76(3): 1346-1352. |
| [13] | 张恒, 魁殿禄, 常虹, 詹志刚. 机械应力对气体扩散层界面传输特性影响[J]. 化工学报, 2025, 76(2): 637-644. |
| [14] | 李文宝, 胡锦鹏, 杜淼, 潘鹏举, 单国荣. 强韧P(SBMA-co-AAc)/SiO2复合水凝胶海洋防污减阻涂层[J]. 化工学报, 2025, 76(2): 787-796. |
| [15] | 吴雨轩, 常诚, 顾雪萍, 冯连芳, 张才亮. 面向立体异构的丁二烯乳液聚合过程模型化[J]. 化工学报, 2025, 76(2): 879-887. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号