• •
刘玉灿1(
), 宋汝佳1, 徐心怡1, 孙秀萍1(
), 张岩1, 王港2, 杨晓永2, 张岩香2, 孙洪伟2
收稿日期:2025-05-09
修回日期:2025-07-16
出版日期:2025-07-17
通讯作者:
刘玉灿,孙秀萍
基金资助:
Yucan LIU1(
), Rujia SONG1, Xinyi XU1, Xiuping SUN1(
), Yan ZHANG1, Gang WANG2, Xiaoyong YANG2, Yanxiang ZHANG2, Hongwei SUN2
Received:2025-05-09
Revised:2025-07-16
Online:2025-07-17
Contact:
Yucan LIU, Xiuping SUN
摘要:
针对电芬顿技术中H2O2原位生成效率低的问题,该研究以优化制备的炭黑/聚四氟乙烯(CB/PTFE)复合改性石墨毡作为阴极构建了高效电化学合成H2O2的体系,并探究了操作条件对H2O2生成的影响规律及机制。在最优CB/PTFE质量比(1:5.5)与350 °C煅烧条件下,成功获得了材料的三维导电网络与疏水界面。研究发现,PTFE疏水层有效抑制了析氢副反应,CB增强了材料的电子传输能力,XPS结果证实改性后的材料具有更低的氧吸附能垒,SEM结果显示纳米活性位点均匀分布于材料表面。在0.09 A电流和0.6 L/min曝气量条件下,体系中H2O2生成浓度达338.87 mg/L,电流效率达92.7%。此外,所构建体系具有优异的抗离子干扰能力(Cl-、SO42-、NO3-浓度为300 mg/L时,H2O2浓度≥272 mg/L),5次循环使用后的H2O2生成量仅降低27.5%。研究结果为电化学合成H2O2提供了新型电极设计思路。
中图分类号:
刘玉灿, 宋汝佳, 徐心怡, 孙秀萍, 张岩, 王港, 杨晓永, 张岩香, 孙洪伟. 炭黑/PTFE复合改性石墨毡阴极优化制备及高效电化学产H2O2机理研究[J]. 化工学报, DOI: 10.11949/0438-1157.20250516.
Yucan LIU, Rujia SONG, Xinyi XU, Xiuping SUN, Yan ZHANG, Gang WANG, Xiaoyong YANG, Yanxiang ZHANG, Hongwei SUN. Optimized preparation of carbon black/PTFE composite-modified graphite felt cathode and the mechanism on high-efficiency electrochemical production of H2O2[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250516.
图2 CB/PTFE@GF的2e- ORR与H2O2 RR反应的RRDE极化曲线(a)、RRDE H2O2选择性(b)和H2O2 RR选择性(c)
Fig.2 Polarization curves of the 2e- ORR and H2O2 reduction reaction (RR) (a), H2O2 selectivity (b), and H2O2 RR selectivity (c) of CB/PTFE@GF
图3 200倍放大时GF (a)、CB/PTFE@GF (b)和CB/PTFE@GF使用120 min后(c)的SEM图;5000倍放大时GF (d)、CB/PTFE@GF (e)和CB/PTFE@GF使用120 min后(f)的SEM图
Fig.3 SEM images of GF (a), CB/PTFE@GF (b), and CB/PTFE@GF after 120 min of use (c) at 200× magnification; SEM images of GF (d), CB/PTFE@GF (e), and CB/PTFE@GF after 120 min of use (f) at 5000× magnification
图4 未改性GF与CB/PTFE@GF的XRD图(a)、XPS全谱图(b)、C1s谱图(c)、O1s谱图(d)、F1s谱图(e)
Fig.4 XRD patterns (a), XPS survey spectra (b), C1s spectra (c), O1s spectra (d), and F1s spectra (e) for GF and CB/PTFE@GF
图6 未改性GF、不同CB:PTFE比例改性GF、使用120 min后CB/PTFE@GF的接触角测试结果
Fig.6 Contact angle measurement results of GF, modified GF with different CB:PTFE mass ratios, and CB/PTFE@GF after 120 min of use
| [1] | 周沄梵, 阮秀秀, 黄驰, 等. 过氧化氢在水处理中的应用与研究进展[J]. 精细化工, 2024, 41(12): 2590‒2602. |
| Zhou Y F, Ruan X X, Huang C, et al. Application and research progress of hydrogen peroxide in water treatment [J]. Fine Chemicals, 2024, 41(12): 2590‒2602. | |
| [2] | Nidheesh P V, Gandhimathi R. Trends in electro‒Fenton process for water and wastewater treatment: an overview [J]. Desalination, 2012, 299: 1‒15. |
| [3] | Luo X, Zhu R Y, Zhao L, et al. Dual‒functional electrocatalyst of defective cobalt‒nitrogen‒doped porous carbon for enhanced in situ hydrogen peroxide generation and electro‒Fenton tetracycline degradation [J]. Separation and Purification Technology, 2024, 346: 127451. |
| [4] | 周文, 程治良, 全学军, 等. Fe/AC催化过氧化氢降解双酚A[J]. 化工学报, 2013, 64(3): 936‒942. |
| Zhou W, Cheng Z L, Quan X J, et al. Catalytic wet oxidation of bisphenol A with hydrogen peroxide over Fe/AC catalyst [J]. CIESC Journal, 2013, 64(3): 936‒942. | |
| [5] | Wang Y, Wang C Y, Chen K S. Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells [J]. Electrochimica Acta, 2007, 52(12): 3965‒3975. |
| [6] | Liu Y K, Wei B, Yang L, et al. Recent research progress in hydrogen peroxide synthesized by electrocatalytic process with two‒electron transfer: a brief review [J]. Journal of Environmental Chemical Engineering, 2024, 12(3): 112972. |
| [7] | Li M Y, Zhu Z L, Yuan S Y, et al. Nitrogen and oxygen Co‒doped graphite felt gas diffusion electrodes for efficient hydrogen peroxide electrosynthesis [J]. Molecular Catalysis, 2023, 541: 113076. |
| [8] | Shi H Y, Zhang Y Y, Pang N, et al. Surface conductance analysis of X‒MoS2 (X = Fe, Co, Ni) prepared on graphite felt as bifunctional catalysts for the hydrogen/oxidation evolution reactions [J]. Electrochimica Acta, 2023, 439: 141596. |
| [9] | Guo H K, Zhao C W, Xu H, et al. New insights into the slow‒drying modified hydrophilic graphite felt gas‒diffusion cathode using acetylene black/PTFE for efficient electro‒Fenton removal of norfloxacin [J]. Journal of Industrial and Engineering Chemistry, 2023, 121: 409‒420. |
| [10] | Castañeda L F, Walsh F C, Nava J L, et al. Graphite felt as a versatile electrode material: Properties, reaction environment, performance and applications [J]. Electrochimica Acta, 2017, 258: 1115‒1139. |
| [11] | 张瑛洁, 马军, 张亮, 等. 钛盐分光光度法测定酸性染料体系中的过氧化氢[J]. 工业水处理, 2008, 28(11): 72‒74. |
| Zhang Y J, Ma J, Zhang L, et al. Spectrophotometric determination of hydrogen peroxide in acidic dye system with titanium oxalate [J]. Industrial Water Treatment, 2008, 28(11): 72‒74. | |
| [12] | Yu F K, Tao L, Cao T Y. High yield of hydrogen peroxide on modified graphite felt electrode with nitrogen‒doped porous carbon carbonized by zeolitic imidazolate framework‒8 (ZIF‒8) nanocrystals [J]. Environmental Pollution, 2019, 255: 113119. |
| [13] | Li X P, Yang J J, Shi X L, et al. N, P Co‒doped graphite felt cathode for efficient removal of ciprofloxacin in an ascorbic acid‒coupled electro‒Fenton process: Simultaneously enhancing H2O2 generation and Fe3+/Fe2+ cycling [J]. Environmental Research, 2025, 266: 120577. |
| [14] | Cheng Y, Wang H C, Qian T, et al. Interfacial engineering of carbon‒based materials for efficient electrocatalysis: Recent advances and future [J]. EnergyChem, 2022, 4(3): 100074. |
| [15] | 寇梦瑶, 郑芳菲, 胥雯, 等. 碱催化过氧化氢体系降解四环素的作用规律与机制解析[J]. 化工学报, 2024: 1‒21. |
| Kou M Y, Zheng F F, Xu W, et al. Analysis of mechanism and law of tetracycline degradation by alkali catalyzed hydrogen peroxide system [J]. China Industrial Economics, 2024: 1‒21. | |
| [16] | Dong Z K, Zhang Y, Yao J. Enhancement of H2O2 yield and TOC removal in electro‒peroxone process by electrochemically modified graphite felt: Performance, mechanism and stability [J]. Chemosphere, 2022, 295: 133896. |
| [17] | Zhang F B, Li T H, Zhang Z L, et al. Enhanced in situ H2O2 electrosynthesis and leachate concentrate degradation through side‒aeration and modified cathode in an electro‒Fenton system [J]. Waste Management, 2024, 186: 35‒45. |
| [18] | Lu Y Z, Jiang Y Y, Gao X H, et al. Charge state‒dependent catalytic activity of Au25(SC12H25)18 nanoclusters for the two‒electron reduction of dioxygen to hydrogen peroxide [J]. Chemical Communications, 2014, 50(62): 8464‒8467. |
| [19] | Enomoto K, Okazaki T, Beppu K, et al. Electrocatalytic synthesis of pure H2O2 from crossover oxygen through a porous proton exchange membrane [J]. Materials Today Catalysis, 2025, 8: 100088. |
| [20] | Zhang K, Gao W, Liu Z Y, et al. Dispersion of hydrophobic conductive carbon black (CB) in polytetrafluoroethylene (PTFE) emulsion through liquid bridges and fabrication of PTFE/CB composite film for triboelectric nanogenerators [J]. Composites Communications, 2024, 50: 102030. |
| [21] | Xu H, Zhang Z, Guo H K, et al. Electrogeneration of hydrogen peroxide by oxygen reduction using anodized graphite felt [J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 125: 387‒393. |
| [22] | Shahjahan Kabir Chowdury M, Park Y, Park S B, et al. Degradation mechanisms, long‒term durability challenges, and mitigation methods for proton exchange membranes and membrane electrode assemblies with Pt/C electrocatalysts in low‒temperature and high‒temperature fuel cells: a comprehensive review [J]. Journal of Electroanalytical Chemistry, 2024, 975: 118712. |
| [23] | Zhang Q Z, Zhou M H, Ren G B, et al. Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three‒phase interface by natural air diffusion[J]. Nature Communications, 2020, 11(1): 1731. |
| [24] | Kim D H, Jung H S, Chun H, et al. Enhanced membrane electrode assembly performance by adding PTFE/Carbon black for high temperature polymer electrolyte membrane fuel cell [J]. International Journal of Hydrogen Energy, 2021, 46(57): 29424‒29431. |
| [25] | Nwamba O C, Echeverria E, Yu Q, et al. Increased electron transfer kinetics and thermally treated graphite stability through improved tunneling paths [J]. Journal of Materials Science, 2020, 55(25): 11411‒11430. |
| [26] | Han Q, Guo W, He X F, et al. Decoupling mass transport and electron transfer by a double‒cathode structure of a Li‒O2 battery with high cyclic stability [J]. Joule, 2022, 6(2): 381‒398. |
| [27] | Huang X H, Yang X K, Gui L, et al. Carbon electrodes for the electrocatalytic synthesis of hydrogen peroxide: a review [J]. New Carbon Materials, 2024, 39(2): 254‒270. |
| [28] | Popescu M, Sandu C, Rosales E, et al. Evaluation of different cathodes and reaction parameters on the enhancement of the electro‒Fenton process [J]. Journal of Electroanalytical Chemistry, 2018, 808: 455‒463. |
| [29] | Niu L J, Liu Z W, Liu G H, et al. Surface hydrophobic modification enhanced catalytic performance of electrochemical nitrogen reduction reaction [J]. Nano Research, 2022, 15(5): 3886‒3893. |
| [30] | Jiang S H, Tan L J, Tong Y J, et al. A heterogeneous double chamber electro‒Fenton with high production of H2O2 using La–CeO2 modified graphite felt as cathode [J]. Chinese Journal of Chemical Engineering, 2023, 54: 98‒105. |
| [31] | Yao S J, Ma J Q, Ma D, et al. Comprehensive evaluation and Mechanistic comparison of Cr‒Catalyzed homogeneous Fenton‒Like reactions for coexisting organics degradation [J]. Chemical Engineering Journal, 2024, 502: 157918. |
| [1] | 康佳, 刘欢, 李海燕, 罗茂亮, 姚洪. 宽温区HCl/NaOH热介质中碳钢腐蚀行为及涂层性能研究[J]. 化工学报, 2025, 76(6): 2872-2885. |
| [2] | 龚丽芳, 任美慧, 蒋吉春, 郭光召, 胡红云, 黄永达, 姚洪. 垃圾焚烧烟气中芳香烃化合物在线监测和选择性催化还原脱除研究[J]. 化工学报, 2025, 76(6): 3018-3028. |
| [3] | 郭乃胜, 朱小波, 王双, 陈平, 褚召阳, 王志臣. 聚氨酯改性沥青高低温性能及影响因素的研究进展[J]. 化工学报, 2025, 76(6): 2505-2523. |
| [4] | 张畅, 解强, 沙雨桐, 王炳杰, 梁鼎成, 刘金昌. 低灰低硅竹炭的制备及衍生硬炭的电化学性能[J]. 化工学报, 2025, 76(6): 3073-3083. |
| [5] | 郭明钢, 杨晓航, 代岩, 米盼盼, 马世鑫, 贺高红, 肖武, 崔福军. 贫氦管输天然气提氦多元化产品耦合工艺优化设计[J]. 化工学报, 2025, 76(5): 2251-2261. |
| [6] | 李坤, 黄锐, 丛君, 马海涛, 常龙娇, 罗绍华. NCM622正极材料结构形态和储锂特性的同步演变[J]. 化工学报, 2025, 76(4): 1831-1840. |
| [7] | 吴迪, 刘世朋, 王文伟, 姜久春, 杨晓光. 机械压力对锂金属电池性能影响的研究进展[J]. 化工学报, 2025, 76(4): 1422-1431. |
| [8] | 石孟琪, 王欢, 王守娟, 席跃宾, 孔凡功. 木质素基炭材料的制备及其在锂硫电池中的研究进展[J]. 化工学报, 2025, 76(4): 1463-1483. |
| [9] | 林纬, 杜建, 姚晨, 朱家豪, 汪威, 郑小涛, 徐建民, 喻九阳. 电化学水软化过程中离子输运与成核机理研究[J]. 化工学报, 2025, 76(4): 1788-1799. |
| [10] | 肖俊兵, 邹博, 任建地, 刘昌会, 贾传坤. 基于相图分析的氯化物复合熔盐储热性能研究[J]. 化工学报, 2025, 76(3): 963-974. |
| [11] | 马钟琛, 魏子杰, 朱明涛, 叶恒棣, 郭学益, 谭磊. 一步氧化法制备锰酸锂正极材料用电池级四氧化三锰[J]. 化工学报, 2025, 76(3): 1363-1374. |
| [12] | 李远华, 凌思棋, 封科军, 冯颖, 郭于菁, 谢世桓. 基于cMOFs的固定化脂肪酶微反应器的构筑及其扁桃酸催化应用[J]. 化工学报, 2025, 76(3): 1170-1179. |
| [13] | 肖俊兵, 钟湘宇, 任建地, 钟芳芳, 刘昌会, 贾传坤. 基于生物碳材料强化的硬脂酸相变材料储热性能研究[J]. 化工学报, 2025, 76(3): 1312-1322. |
| [14] | 刘彦贝, 王若名, 刘娟, Raza Taimoor, 陆玉正, Raza Rizwan, 朱斌, 李松波, 安胜利, 云斯宁. CeO2@La0.6Sr0.4Co0.2Fe0.8O3-δ 电解质的制备及半导体离子燃料电池性能研究[J]. 化工学报, 2025, 76(3): 1353-1362. |
| [15] | 李文宝, 胡锦鹏, 杜淼, 潘鹏举, 单国荣. 强韧P(SBMA-co-AAc)/SiO2复合水凝胶海洋防污减阻涂层[J]. 化工学报, 2025, 76(2): 787-796. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号