化工学报

• •    

不同特征燃料宽范围掺氨富燃污染物排放特性及动力学分析

杨远平1(), 马佳琪1, 司桐2, 王翔3, 李水清2()   

  1. 1.北京石油化工学院机械工程学院,北京 102617
    2.清华大学能源与动力工程系,北京 100084
    3.新型电力系统运行与;控制全国重点实验室(清华大学),北京 100084
  • 收稿日期:2025-09-30 修回日期:2025-11-13 出版日期:2025-12-05
  • 通讯作者: 李水清
  • 作者简介:杨远平(1990—),男,博士,讲师,yangyuanping1@163.com
  • 基金资助:
    国家重点研发计划资助项目(2022YFB4003903);北京市教委一般资助项目(KM202310017008);国家自然科学基金资助项目(52306151)

Impact of fuel properties on pollutant emissions and reaction Kinetics in ammonia-blended fuel-rich combustion

Yuanping YANG1(), Jiaqi MA1, Tong SI2, Xiang WANG3, Shuiqing LI2()   

  1. 1.School of Mechanical Engineering,Beijing Institute of Petrochemical Technology,Beijing 102617,China
    2.Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
    3.State Key Laboratory of Power System Operation and Control (Tsinghua University), Beijing 100084, China
  • Received:2025-09-30 Revised:2025-11-13 Online:2025-12-05
  • Contact: Shuiqing LI

摘要:

利用切向旋流管状燃烧机理实验台,结合光学诊断与反应动力学分析,系统研究了CH4、CO和H2三种典型燃料掺氨富燃条件下NO x 排放特性及生成机理。实验结果表明,相比于掺混甲烷,CO的引入能够更好地降低吹熄极限和托举临界值,改善火焰稳定性。然而,活性燃料的掺混燃烧导致NO x 排放呈数量级增加,尤其在CO/NH3混燃体系,掺氨比0.6时NO x 排放高于4500 (体积分数×10-6,@3.5%O2),远超CH4和H2混燃体系。OH*和NH2*化学自发光以及N主要转化路径的动力学分析表明,富燃条件下,NO x 生成主要来源于NH i 路径,OH和NH i 自由基在NO生成与消耗中起枢纽作用,CO掺氨燃烧体系中,高OH浓度增强了NH i 自由基的氧化,进而导致NO x 排放高;同时不同燃料掺混条件下氨脱氢反应及NH i 还原反应的差异同样影响氮的转化路径。

关键词: 活性燃料掺氨, 燃烧稳定性, NO x 生成机制, 化学自发光, 反应动力学

Abstract:

Ammonia combustion suffers from high NO x emissions and poor flame stability, while rich co-firing with active fuels combined with staged combustion offers a promising mitigation strategy. However, the NO x formation characteristics and interactions between nitrogen-containing intermediates and active fuels underdifferent fuel-specific ammonia-rich conditions remain unclear. Here, a tangential swirl tubular combustor,coupled with optical diagnostics and reaction kinetics analysis, was used to systematically investigate NO x emissions and formation mechanisms for CH4, CO, and H2 co-firing with ammonia. Results show that COaddition lowers the blow-off limit and lift-off height, enhancing flame stability, but active fuel co-firingsignificantly increases NOx emissions, with the CO/NH3 system showing the highest levels. Specifically, NO x emission exceeded 4500 (volume fraction×10-6, @3.5%O2) when the ammonia blending ratio (ENH3) was 0.6.OH and NH i radicals play pivotal roles in NO formation and consumption, with high OH concentrations inCO/NH3 promoting NH i oxidation and elevated NO x emissions, while variations in ammonia dehydrogenationand NH i reduction across different fuels further influence nitrogen transformation pathways.

Key words: active fuel/ammonia co-combustion, flame stability, NO x formation mechanism, chemiluminescence, reaction kinetics

中图分类号: