化工学报 ›› 2015, Vol. 66 ›› Issue (8): 2911-2919.doi: 10.11949/j.issn.0438-1157.20150821

• 流体力学与传递现象 • 上一篇    下一篇

基于EMMS模型的大型催化裂化装置再生器气固分布数值模拟

刘雅宁1, 鲁波娜1, 卢利强1, 陈飞国1, 葛蔚1, 吴雷2, 王韶华2, 李静海1   

  1. 1 中国科学院过程工程研究所多相复杂系统国家重点实验室, 北京 100190;
    2 中国石化工程建设有限公司, 北京 100101
  • 收稿日期:2015-06-03 修回日期:2015-06-23 出版日期:2015-08-05 发布日期:2015-08-05
  • 通讯作者: 葛蔚 E-mail:wge@ipe.ac.cn
  • 基金资助:

    国家自然科学基金项目(21306201,21225628);国家科技支撑计划项目(2012BAE05B01)。

EMMS-based numerical simulation on gas and solids distribution in large-scale FCC regenerators

LIU Yaning1, LU Bona1, LU Liqiang1, CHEN Feiguo1, GE Wei1, WU Lei2, WANG Shaohua2, LI Jinghai1   

  1. 1 State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
    2 SINOPEC Engineering Incorporation, Beijing 100101, China
  • Received:2015-06-03 Revised:2015-06-23 Published:2015-08-05 Online:2015-08-05
  • Supported by:

    supported by the National Natural Science Foundation of China (21306201, 21225628) and the National Science and Technology Infrastructure Program (2012BAE05B01).

摘要:

大型催化裂化装置中再生器的规模庞大,其中的气固分布装置对整体性能有重要影响。与传统的冷模实验相比,对再生器整体和气固分布器局部的多尺度计算机模拟有利于更深入地了解其流动规律,高效便捷地考察不同结构设计与操作条件对气固分布的影响,辅助其优化设计。结合双流体模型和EMMS曳力模型,首先模拟了中石化现有3.5 Mt·a-1大规模清洁汽油生产装置的再生反应器,进而模拟并分析了基于同一工艺设计的7 Mt·a-1超大规模再生反应器内不同气体和固体分布器对流动与混合过程的影响。模拟结果表明:3环较2环分布器能有效改善气体分布的均匀性,但增加每个环上的气体入口数对其分布的改善有限;而对固体分布器,开孔率减小可增加其阻力,并在一定程度上改善混合性能。进一步讨论了研究分布环喷口处的气固流动与混合细节的必要性,初步展示了基于EMMS模型的离散颗粒模拟方法(EMMS-DPM)对其的有效性。

关键词: EMMS模型, EMMS-DPM, 催化裂化再生器, 气体分布器, 固体分布器, 混合

Abstract:

Micro-scale discrete particle method (DPM) and meso-scale computational fluid dynamics (CFD) simulations, both based on the energy-minimization multi-scale (EMMS) model, were carried out on the complex gas-solid flow in the regenerators of fluid catalytic cracking (FCC), aiming to provide visualized quantitative analysis for the performance improvement of the newly designed systems with unprecedented 7 Mt·a-1 throughput. For verification, a current 3.5 Mt·a-1 regenerator was first successfully simulated. Then, a 7 Mt·a-1 regenerator was simulated to investigate the performance of the air and solids distributors. The simulation results showed that increasing the gas ring number from 2 to 3 can improve the homogeneity of solids distribution significantly, while increasing the gas inlet number from 1 to 2 for the 3-gas-ring case made little improvement. For solid phase distributor, the injection of solids and their mixing with the internal material were simulated and analyzed. It was demonstrated that decreasing the hole fraction can effectively increase the resistance and improve the mixing performance. The necessity of understanding the detailed flow field around the nozzles for further improvements is demonstrated, and EMMS-DPM can be a powerful tool for this purpose.

Key words: EMMS model, EMMS-DPM, FCC regenerator, gas distributor, solids distributor, mixing

中图分类号: 

  • TQ021.1
[1] Chen Junwu(陈俊武), Lu Hanwei(卢捍卫). Prospects of status and role of FCC in refinery—FCC will continue to play a leading role in petroleum refining industry [J]. Acta Petrolei Sinica: Petroleum Processing Section(石油学报:石油加工), 2003, 19(1): 1-11.
[2] Cui Shouye(崔守业), Xu Youhao(许友好), Cheng Congli(程从礼), Gong Jianhong(龚剑洪). Commercialization and new developments of MIP technology [J]. Acta Petrolei Sinica: Petroleum Processing Section(石油学报:石油加工), 2010, (suppl.): 23-28.
[3] Shan Honghong(山红红), Li Chunyi(李春义), Niu Genlin(钮根林), Yang Chaohe(杨朝合), Zhang Jianfang(张建芳). Research progress in fluid catalytic cracking technology [J]. Journal of the University of Petroleum(石油大学学报), 2005, 29(6): 135-150.
[4] Xu Youhao. Advance in China fluid catalytic cracking (FCC) process [J]. Scientia Sinica Chimica, 2014, 44(1): 13-24.
[5] Jin Yong(金涌), Yu Zhiqing(俞芷青), Sun Zhufan(孙竹范), Peng Bingpu(彭秉璞). Investigationon branched pipe distributors for fluidized beds (Ⅱ): Deternination of desigh parameters for branched pipe distributors [J]. Journal of Chemical Industry and Engineering (China)(化工学报), 1984, (3): 203-213.
[6] Wang Zhangmao(王樟茂), Zhang Nianying(张年英), Lü Dewei(吕德伟), Chen Gantang(陈甘棠), Liu Qing(刘青), Jiang Yinrui(江银瑞), Lai Chenlie(赖成烈). Study on characteristics of perforated gas-sidtributors in a commercial fluidized bed [J]. PetroChemical Technoloty(石油化工), 1986, 7: 399-405.
[7] Wu Chunlian(巫春连), Wei Yaodong(魏耀东), Cai Lianbo(蔡连波), Chen Qiang(陈强). CFD simulation of bubble-type gas distributor's flow field for gas-liquid bubble column [J]. Chemical Engineering &Machinery(化工机械), 2013, 40(30): 340-346.
[8] Wang Weiwen(王伟文), Xu Kai(许凯), Li Jianlong(李建隆), Li Xingang(李鑫钢). Numerical simulation of the flow field in double cone-diversion gas distributo [J]. Journal of Chemical Engineering of Chinese Universities(高校化学工程学报), 2009, 23(6): 945-950.
[9] Li Guang, Yang Xiaogang, Dai Gance. CFD simulation of effects of the configuration of gas distributors on gas-liquid flow and mixing in a bubble column [J]. Chemical Engineering Science, 2009, 64: 5104-5116.
[10] Akbari V, Borhani T N G, Godini H R, Hamid M K A. Model-based analysis of the impact of the distributor on the hydrodynamic performance of industrial polydisperse gas phase fluidized bed polymerization reactors [J]. Powder Technology, 2014, 267: 398-411.
[11] Bahadori F, Rahimi R. Simulations of gas distributors in the design of shallow bubble column reactors [J]. Chem. Eng. Tech., 2007, 30: 443-447.
[12] Chen Junwu(陈俊武). Fluid Catalytic Cracking Technology and Engineering (催化裂化工艺与工程)[M]. 2nd ed. Beijing: China PetroChemical Press, 2005
[13] Li Jinghai(李静海), Ge Wei(葛蔚), Ouyang Jie(欧阳洁), Yang Ning(杨宁), Gao Shiqiu(高士秋), Song Wenli(宋文立). Multi-scale Simulation of Particle-Fluid Complex Systems (颗粒流体复杂系统的多尺度模拟)[M]. Beijing: Science Press, 2005.
[14] Yang Ning, Wang Wei, Ge Wei, Li Jinghai. Simulation of heterogeneous structure in a circulating fluidized bed riser by combining the two-fluid model with the EMMS approach [J]. Industrial & Engineering Chemistry Research, 2004, 43(18): 5548-5561.
[15] Yang Ning, Wang Wei, Ge Wei, Li Jinghai. CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient [J]. Chemical Engineering Journal, 2003, 96: 71-80.
[16] Xiao Haitao(肖海涛), Qi Haiying(祁海鹰), You Changfu(由长福), Xu Xuchang(徐旭常). The oretical model of drag between gas and solid phase [J]. Journal of Chemical Industry and Engineering (China)(化工学报), 2003, 54(3): 311-315.
[17] Wang Wei, Li Jinghai. Simulation of gas-solid two-phase flow by a multi-scale CFD approach-of the EMMS model to the sub-grid level [J]. Chemical Engineering Science, 2007, 62: 208-231.
[18] Wang Junwu, Ge Wei, Li Jinghai. Eulerian simulation of heterogeneous gas-solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description [J]. Chemical Engineering Science, 2008, 63: 1553-1571.
[19] Lu Bona(鲁波娜), Cheng Congli(程从礼), Lu Weimin(鲁维民), Wang Wei(王维), Xu Youhao(许友好). Numerical simulation of reaction process in MIP riser based on multi-scale model [J]. CIESC Journal(化工学报), 2013, 64(6): 1983-1992.
[20] Lu Bona, Wang Wei, Li Jinghai, Wang Xianghui, Gao Shiqiu, Lu Weimin, Xu Youhao, Long Jun. Multi-scale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model [J]. Chemical Engineering Science, 2007, 62: 5487-5494.
[21] Hong Kun, Shi Zhansheng, Ullah Atta, Wang Wei. Extending the bubble-based EMMS model to CFB riser simulations [J]. Powder Technology, 2014, 266: 424-432.
[22] Shi Zhansheng, Wang Wei, Li Jinghai. A bubble-based EMMS model for gas-solid bubbling fluidization [J]. Chemical Engineering Science, 2011, 66: 5541-5555.
[23] Liu Yaning, Chen Jianhua, Ge Wei, Wang Junwu, Wang Wei. Acceleration of CFD simulation of gas-solid flow by coupling macro-/meso-scale EMMS model [J]. Powder Technology, 2011, 212: 289-295.
[24] Liu Xinhua, Hu Shanwei, Jiang Yuefang, Li Jinghai. Extension and application of energy-minimization multi-scale (EMMS) theory for full-loop hydrodynamic modeling of complex gas-solid reactors [J]. Chemical Engineering Journal, 2015, 278: 492-503
[25] Lu Liqiang, Xu Ji, Ge Wei, Yue Yunpeng, Liu Xinhua, Li Jinghai. EMMS-based discrete particle method (EMMS-DPM) for simulation of gas-solid flows [J]. Chemical Engineering Science, 2014, 120: 67-87.
[1] 孙裕坤, 杨焘, 吴江涛. R32+R1234yf+R1234ze(E)混合制冷剂气液相平衡实验研究[J]. 化工学报, 2022, 73(3): 1063-1071.
[2] 孙铭泽, 马宁, 李浩然, 姜海峰, 洪文鹏, 牛晓娟. 中低温超临界CO2及其混合工质布雷顿循环热力学分析[J]. 化工学报, 2022, 73(3): 1379-1388.
[3] 毛恒, 王月, 王森, 刘伟民, 吕静, 陈甫雪, 赵之平. APETS改性ZIF-L/PEBA混合基质膜强化渗透汽化分离苯酚研究[J]. 化工学报, 2022, 73(3): 1389-1402.
[4] 高欢, 丁国良, 周发贤, 庄大伟. R410A制冷剂在润滑油中的动态析出特性的研究[J]. 化工学报, 2022, 73(3): 1054-1062.
[5] 罗俊仪, 吴石亮, 肖睿. 环烷烃与航空煤油掺混燃烧特性研究[J]. 化工学报, 2022, 73(2): 847-856.
[6] 周志强, 崔国民, 杨岭, 马秀宝, 肖媛, 杨其国. 一种基于并行计算的混合算法优化有分流换热网络[J]. 化工学报, 2022, 73(2): 801-813.
[7] 王利霞, 毕肇杰, 史淼磊, 王晨, 王东方, 李倩. UHMWPE/PEG共混方式及配比对UHMWPE缠结行为及性能的影响[J]. 化工学报, 2022, 73(2): 933-940.
[8] 成文凯, 张先明, 王嘉骏, 冯连芳. 反向旋转卧式双轴捏合反应器混合特性的数值模拟[J]. 化工学报, 2022, 73(1): 162-174.
[9] 郝刚卫, 刘晔, 晏刚, 鱼剑琳. 串并联风冷冰箱性能优化[J]. 化工学报, 2021, 72(S1): 178-183.
[10] 何起帆, 吴闽强, 李廷贤, 王如竹. 正十八烷/OBC/EG复合定型相变材料制备及热物性[J]. 化工学报, 2021, 72(S1): 539-545.
[11] 罗介霖, 杨凯寅, 赵朕, 王勤, 陈光明. 低GWP混合工质回热热泵采暖性能[J]. 化工学报, 2021, 72(S1): 84-90.
[12] 王世茂, 李向东, 蔡运雄, 李国庆, 齐圣. 基于小尺度实验的燃料蒸气-空气预混气体泄爆动力学研究[J]. 化工学报, 2021, 72(9): 4961-4972.
[13] 李子航, 王占博, 苗政, 纪献兵. 亚临界有机朗肯循环系统工质筛选及热经济性分析[J]. 化工学报, 2021, 72(9): 4487-4495.
[14] 赵晶, 李伯耿, 卜志扬, 范宏. 微通道内低黏聚合物流体的停留时间分布研究[J]. 化工学报, 2021, 72(8): 4030-4038.
[15] 范洪刚, 赵丹丹, 顾菁, 王亚琢, 袁浩然, 陈勇. 生物质三组分二元混合热解特性研究[J]. 化工学报, 2021, 72(7): 3788-3800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张秀莉, 张泽廷, 张卫东, 郝欣. 随机填充中空纤维膜组件中非稳态渗透传质数学模型[J]. CIESC Journal, 2004, 12(2): 185 -190 .
[2] 张焕军, 朱国才. 机械力强化作用下轻烧氧化镁碳化过程的传质与反应动力学研究[J]. CIESC Journal, 2004, 12(2): 196 -201 .
[3] 祝贵兵, 彭永臻, 王淑莹, 左金龙, 王亚宜, 郭建华. 分段进水生物脱氮工艺稳态模型的开发与试验评价[J]. CIESC Journal, 2007, 15(3): 411 -417 .
[4] 司徒粤, 胡剑峰, 黄洪, 傅和青, 曾汉维, 陈焕钦. 新型环氧大豆油增韧酚醛树脂的合成与性质[J]. CIESC Journal, 2007, 15(3): 418 -423 .
[5] 张玉玲, 黄君礼, 程志辉, 杨士林. 微波溶剂法合成天冬氨酸-谷氨酸共聚物研究[J]. CIESC Journal, 2007, 15(3): 458 -462 .
[6] 闻建平, 王长林, 乔萍. 2-氯-5-氯甲基吡啶在气升环流反应器中的合成研究[J]. CIESC Journal, 2003, 11(5): 608 -610 .
[7] 赵伟荣, 史惠祥, 汪大翚. 臭氧氧化阳离子红染料的动力学研究[J]. CIESC Journal, 2003, 11(4): 388 -394 .
[8] 娄文勇, 宗敏华, 范晓丹. 水/有机溶剂双相中固定化啤酒酵母细胞催化三甲基硅乙酮不对称还原[J]. CIESC Journal, 2003, 11(2): 136 -140 .
[9] 章亚东, 高晓蕾, 陈霞, 王朝进, 蒋登高. 聚苯乙烯负载钼(Ⅵ)配合物的合成、表征及其催化环己烯环氧化活性研究[J]. CIESC Journal, 2003, 11(3): 318 -325 .
[10] 霍超, 孟灋, 任晓红, 阳永荣, 戎顺熙. 烯烃聚合过程的分形演化及其生长模型[J]. CIESC Journal, 2003, 11(1): 33 -37 .