化工学报 ›› 2022, Vol. 73 ›› Issue (8): 3541-3552.DOI: 10.11949/0438-1157.20220232
孟辉波1,2(), 蒙彤1,2, 禹言芳1,2(), 王宗勇1,2, 吴剑华1,2
收稿日期:
2022-02-23
修回日期:
2022-04-08
出版日期:
2022-08-05
发布日期:
2022-09-06
通讯作者:
禹言芳
作者简介:
孟辉波(1981—),男,博士,教授,syuct_hj@163.com
基金资助:
Huibo MENG1,2(), Tong MENG1,2, Yanfang YU1,2(), Zongyong WANG1,2, Jianhua WU1,2
Received:
2022-02-23
Revised:
2022-04-08
Online:
2022-08-05
Published:
2022-09-06
Contact:
Yanfang YU
摘要:
在湍流状态Re=2640~17600下,采用恒热通量传热实验与数值模拟相结合的方法,系统研究Reynolds数Re和交错角对Ross LPD型静态混合器内湍流流动与传热性能影响,采用Nusselt数、Darcy摩擦系数、综合传热系数、速度场与温度梯度和压力梯度协同角等参数评价混合器内传热强化性能;基于CFD与LPT相耦合分析混合器内流体微元拉伸率。研究结果表明:SST k-ω模型预测Ross型静态混合器湍流阻力及传热结果与实验结果具有很好一致性;Ross混合器流场内形成与流场尺度较为接近的纵向涡,其涡心在圆形截面与半圆形截面中心间周期性迁移,横截面内湍流分散混合效率是Kenics的3.36~1.72倍;当Re>7040时,Ross LPD综合传热性能明显优于KSM;当叶片夹角为30°时,综合传热性能系数具有最大值;Ross LPD内插件具有高效低阻的技术优势和结构改进潜力。
中图分类号:
孟辉波, 蒙彤, 禹言芳, 王宗勇, 吴剑华. Ross LPD型静态混合器内湍流传热与混合强化特性[J]. 化工学报, 2022, 73(8): 3541-3552.
Huibo MENG, Tong MENG, Yanfang YU, Zongyong WANG, Jianhua WU. Turbulent heat transfer and mixing enhancement characteristics in Ross LPD static mixer[J]. CIESC Journal, 2022, 73(8): 3541-3552.
参数 | 数值 |
---|---|
入口段长度 (l1) | 40 mm |
元件长度 (l2) | 82.91 mm |
相邻元件距离 (l3) | 60 mm |
出口段长度 (l4) | 60 mm |
椭圆板长轴 (a) | 88.11 mm |
椭圆板短轴 (b) | 40 mm |
管径 (D) | 40 mm |
叶片夹角 (α) | 30° |
元件个数 | 12 |
元件厚度 (δ) | 2 mm |
表1 Ross LPD静态混合器的结构参数
Table 1 Specifications of the Ross LPD static mixer
参数 | 数值 |
---|---|
入口段长度 (l1) | 40 mm |
元件长度 (l2) | 82.91 mm |
相邻元件距离 (l3) | 60 mm |
出口段长度 (l4) | 60 mm |
椭圆板长轴 (a) | 88.11 mm |
椭圆板短轴 (b) | 40 mm |
管径 (D) | 40 mm |
叶片夹角 (α) | 30° |
元件个数 | 12 |
元件厚度 (δ) | 2 mm |
Model | Error of f/% | Error of Nu/% |
---|---|---|
SST k-ω | 7.07 | 6.31 |
Standard k-ω | 7.32 | 9.88 |
BSL k-ω | 9.03 | 9.1 |
Realizable k-ε | 14.86 | 191.43 |
Transition k-kl-ω | 7.52 | 25.43 |
Standard k-ε | 14.42 | 225.66 |
RNG k-ε | 13.13 | 310.87 |
Transition SST | 7.11 | 19.68 |
Reynolds stress | 12.06 | 136.95 |
表2 不同模型的模拟结果与实验数据之间的误差
Table 2 Error between predicted results of different models and experimental data
Model | Error of f/% | Error of Nu/% |
---|---|---|
SST k-ω | 7.07 | 6.31 |
Standard k-ω | 7.32 | 9.88 |
BSL k-ω | 9.03 | 9.1 |
Realizable k-ε | 14.86 | 191.43 |
Transition k-kl-ω | 7.52 | 25.43 |
Standard k-ε | 14.42 | 225.66 |
RNG k-ε | 13.13 | 310.87 |
Transition SST | 7.11 | 19.68 |
Reynolds stress | 12.06 | 136.95 |
边界层层数(B) | 网格数量/个 |
---|---|
0 | 1095201 |
5 | 1562317 |
7 | 1746037 |
10 | 1999405 |
13 | 2721679 |
15 | 2813697 |
表3 不同边界层层数网格数量
Table 3 Initialization parameter for grid independence verification
边界层层数(B) | 网格数量/个 |
---|---|
0 | 1095201 |
5 | 1562317 |
7 | 1746037 |
10 | 1999405 |
13 | 2721679 |
15 | 2813697 |
1 | 朱兵, 陈定江, 蒋萌, 等. 化学工程在低碳发展转型中的关键作用探讨: 从物质资源利用与碳排放关联的视角[J]. 化工学报, 2021, 72(12): 5893-5903. |
Zhu B, Chen D J, Jiang M, et al. Key role of chemical engineering in transition to low-carbon development in perspective of the linkage between resource utilization and carbon emissions[J]. CIESC Journal, 2021, 72(12): 5893-5903. | |
2 | 初广文, 廖洪钢, 王丹, 等. 微纳介尺度气液反应过程强化[J]. 化工学报, 2021, 72(7): 3435-3444. |
Chu G W, Liao H G, Wang D, et al. Gas-liquid reaction process intensification at micro-/ nano-mesoscale[J]. CIESC Journal, 2021, 72(7): 3435-3444. | |
3 | 刘有智. 谈过程强化技术促进化学工业转型升级和可持续发展[J]. 化工进展, 2018, 37(4): 1203-1211. |
Liu Y Z. Discussion on process intensification technology to promote the transformation, upgrading and sustainable development of chemical industry[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1203-1211. | |
4 | Zhu Y T, Bin Mohamad Sultan B, Nguyen X, et al. Performance study and comparison between catalytic static mixer and packed bed in heterogeneous hydrogenation of vinyl acetate[J]. Journal of Flow Chemistry, 2021, 11(3): 515-523. |
5 | Valdés J P, Kahouadji L, Matar O K. Current advances in liquid-liquid mixing in static mixers: a review[J]. Chemical Engineering Research and Design, 2022, 177: 694-731. |
6 | Meng H B, Wang J B, Yu Y F, et al. CFD-PBM numerical study on liquid-liquid dispersion in the Q-type static mixer[J]. Industrial & Engineering Chemistry Research, 2021, 60(49): 18121-18135. |
7 | Hu Q X, Qu X H, Peng W, et al. Experimental and numerical investigation of turbulent heat transfer enhancement of an intermediate heat exchanger using corrugated tubes[J]. International Journal of Heat and Mass Transfer, 2022, 185: 122385. |
8 | Sheikholeslami M, Gorji-Bandpy M, Ganji D D. Review of heat transfer enhancement methods: focus on passive methods using swirl flow devices[J]. Renewable and Sustainable Energy Reviews, 2015, 49: 444-469. |
9 | Meng H B, Han M Q, Yu Y F, et al. Numerical evaluations on the characteristics of turbulent flow and heat transfer in the Lightnin static mixer[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119788 |
10 | Thakur R K, Vial C, Nigam K D P, et al. Static mixers in the process industries—a review[J]. Chemical Engineering Research and Design, 2003, 81(7): 787-826. |
11 | Meng H B, Hao Y N, Yu Y F, et al. Experimental study of gas-liquid two-phase bubbly flow characteristics in a static mixer with three twisted leaves[J]. Korean Journal of Chemical Engineering, 2020, 37(11): 1859-1866. |
12 | Beisl S, Adamcyk J, Friedl A. Direct precipitation of lignin nanoparticles from wheat straw organosolv liquors using a static mixer[J]. Molecules (Basel, Switzerland), 2020, 25(6): 1388. |
13 | 任新林, 梅毅, 冯梦黎, 等. SK静态混合器对工业磷酸脱砷的过程强化研究[J]. 化工学报, 2018, 69(S2): 218-225. |
Ren X L, Mei Y, Feng M L, et al. Process intensification of removing arsenic from industrial phosphoric acid by Keltics static mixer[J]. CIESC Journal, 2018, 69(S2): 218-225. | |
14 | 谢沛, 王凯, 邓建, 等. 模块化微反应系统内溴化间甲基苯甲醚连续合成[J]. 化工学报, 2020, 71(9): 4168-4176. |
Xie P, Wang K, Deng J, et al. Continuous synthesis of 4-bromo-3-methylanisole in modular microreaction system[J]. CIESC Journal, 2020, 71(9): 4168-4176. | |
15 | Pezo L, Pezo M, Banjac V, et al. Blending performance of the coupled Ross static mixer and vertical feed mixer—discrete element model approach[J]. Powder Technology, 2020, 375: 20-27. |
16 | Revathi D, Saravanan K. Experimental studies on hydrodynamic aspects for mixing of non-Newtonian fluids in a Komax static mixer[J]. Chemical Industry and Chemical Engineering Quarterly, 2020, 26(4): 329-335. |
17 | Alvarez A J, Myerson A S. Continuous plug flow crystallization of pharmaceutical compounds[J]. Crystal Growth & Design, 2010, 10(5): 2219-2228. |
18 | Ghanem A, Lemenand T, Della Valle D, et al. Static mixers: mechanisms, applications, and characterization methods—a review[J]. Chemical Engineering Research and Design, 2014, 92(2): 205-228. |
19 | Anxionnaz Z, Cabassud M, Gourdon C, et al. Heat exchanger/reactors (HEX reactors): concepts, technologies: state-of-the-art[J]. Chemical Engineering and Processing: Process Intensification, 2008, 47(12): 2029-2050. |
20 | Joshi P, Nigam K D P, Nauman E B. The Kenics static mixer: new data and proposed correlations[J]. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 59(3): 265-271. |
21 | Jiang X R, Xiao Z D, Jiang J N, et al. Effect of element thickness on the pressure drop in the Kenics static mixer[J]. Chemical Engineering Journal, 2021, 424: 130399. |
22 | Jiang X R, Yang N, Wang R J. Effect of aspect ratio on the mixing performance in the Kenics static mixer[J]. Processes, 2021, 9(3): 464. |
23 | Habchi C, Lemenand T, Della Valle D, et al. Entropy production and field synergy principle in turbulent vortical flows[J]. International Journal of Thermal Sciences, 2011, 50(12): 2365-2376. |
24 | Habchi C, Russeil S, Bougeard D, et al. Enhancing heat transfer in vortex generator-type multifunctional heat exchangers[J]. Applied Thermal Engineering, 2012, 38: 14-25. |
25 | Kwon B, Liebenberg L, Jacobi A M, et al. Heat transfer enhancement of internal laminar flows using additively manufactured static mixers[J]. International Journal of Heat and Mass Transfer, 2019, 137: 292-300. |
26 | Meng H B, Wang F, Yu Y F, et al. A numerical study of mixing performance of high-viscosity fluid in novel static mixers with multitwisted leaves[J]. Industrial & Engineering Chemistry Research, 2014, 53(10): 4084-4095. |
27 | Meng H B, Zhu G X, Yu Y F, et al. The effect of symmetrical perforated holes on the turbulent heat transfer in the static mixer with modified Kenics segments[J]. International Journal of Heat and Mass Transfer, 2016, 99: 647-659. |
28 | Yu Y F, Wang H Y, Song M Y, et al. The effects of element direction and intersection angle of adjacent Q-type inserts on the laminar flow and heat transfer[J]. Applied Thermal Engineering, 2016, 94: 282-295. |
29 | Meng H B, Song M Y, Yu Y F, et al. Enhancement of laminar flow and mixing performance in a lightnin static mixer[J]. International Journal of Chemical Reactor Engineering, 2017, 15(3): 20160112. |
30 | 李权树, 魏思远, 龚斌, 等. Kenics型静态混合器充分发展段纵向涡演变分析[J]. 过程工程学报, 2016, 16(4): 549-555. |
Li Q S, Wei S Y, Gong B, et al. Analysis on evolution of longitudinal vortexes in fully developed zone of a kenics static mixer[J]. The Chinese Journal of Process Engineering, 2016, 16(4): 549-555. | |
31 | 禹言芳, 李中根, 孟辉波, 等. Lightnin静态混合器内瞬态流场POD分析及混合特性研究[J]. 北京化工大学学报(自然科学版), 2021, 48(4): 19-26. |
Yu Y F, Li Z G, Meng H B, et al. Proper orthogonal decomposition (POD) analysis of the transient flow field and mixing characteristics in a Lightnin static mixer[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2021, 48(4): 19-26. | |
32 | Rukruang A, Chimres N, Kaew-On J, et al. A critical review on the thermal performance of alternating cross-section tubes[J]. Alexandria Engineering Journal, 2022, 61(9): 7315-7337. |
33 | Jovanović A, Pezo M, Pezo L, et al. DEM/CFD analysis of granular flow in static mixers[J]. Powder Technology, 2014, 266: 240-248. |
34 | Schultz R, Cole R. Uncertainty analysis in boiling nucleation[J]. AIChE Symposium Series, 1979, 75(189): 32-39. |
35 | Blasius H. Das Aehnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten. Mitteilung 131 über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens[M]. Berlin: Springer, 1913. |
36 | Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. International Chemical Engineering, 1976, 16(2): 359-368. |
37 | Petukhov B S. Heat transfer and friction in turbulent pipe flow with variable physical properties[J]. Advances in Heat Transfer, 1970, 6(C): 503-564. |
38 | Dittus F W, Boelter L M K. Heat transfer in automobile radiators of the tubular type[J]. International Communications in Heat and Mass Transfer, 1985, 12(1): 3-22. |
39 | Kurnia J C, Sasmito A P, Mujumdar A S. Evaluation of the heat transfer performance of helical coils of non-circular tubes[J]. Journal of Zhejiang University-SCIENCE A, 2011, 12(1): 63-70. |
40 | Kurnia J C, Sasmito A P, Jangam S V, et al. Improved design for heat transfer performance of a novel phase change material (PCM) thermal energy storage (TES)[J]. Applied Thermal Engineering, 2013, 50(1): 896-907. |
41 | 罗守南. 基于超声多普勒方法的管道流量测量研究[D]. 北京: 清华大学, 2004. |
Luo S N. Research on pipe-flow measurement based on ultrasonic Doppler methods[D]. Beijing: Tsinghua University, 2004. | |
42 | Çengel Y A, Cimbala J M. Fluid Mechanics: Fundamentals and Applications[M]. New York: McGraw Hill Publication, 2006. |
43 | 傅鑫亮, 闫志勇. 仿柳叶形静态混合器的流动及混合特性[J]. 化工学报, 2017, 68(12): 4600-4606. |
Fu X L, Yan Z Y. Flow and mixing characteristics in willow leaf-like static mixer[J]. CIESC Journal, 2017, 68(12): 4600-4606. | |
44 | Guo Z Y, Li D Y, Wang B X. A novel concept for convective heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 1998, 41(14): 2221-2225. |
45 | Zeng M, Tao W Q. Numerical verification of the field synergy principle for turbulent flow[J]. Journal of Enhanced Heat Transfer, 2004, 11(4): 453-460. |
46 | Tao W Q, He Y L, Wang Q W, et al. A unified analysis on enhancing single phase convective heat transfer with field synergy principle[J]. International Journal of Heat and Mass Transfer, 2002, 45(24): 4871-4879. |
47 | Tao W Q, Guo Z Y, Wang B X. Field synergy principle for enhancing convective heat transfer: its extension and numerical verifications[J]. International Journal of Heat and Mass Transfer, 2002, 45(18): 3849-3856. |
48 | 周俊杰, 陶文铨, 王定标. 场协同原理评价指标的定性分析和定量探讨[J]. 郑州大学学报(工学版), 2006, 27(2): 45-47. |
Zhou J J, Tao W Q, Wang D B. Qualitative analysis and quantitative discussion of index for field synergy principle[J]. Journal of Zhengzhou University (Engineering Science), 2006, 27(2): 45-47. | |
49 | Liu W, Liu Z C, Guo Z Y. Physical quantity synergy in laminar flow field of convective heat transfer and analysis of heat transfer enhancement[J]. Chinese Science Bulletin, 2009, 54(19): 3579-3586. |
50 | Ottino J M. The Kinematics of Mixing: Stretching, Chaos, and Transport[M]. Cambridge: Cambridge University Press, 1989. |
51 | Saatdjian E, Rodrigo A J S, Mota J P B. On chaotic advection in a static mixer[J]. Chemical Engineering Journal, 2012, 187(1): 289-298. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 谈莹莹, 刘晓庆, 王林, 黄鲤生, 李修真, 王占伟. R1150/R600a自复叠制冷循环开机动态特性实验研究[J]. 化工学报, 2023, 74(S1): 213-222. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[8] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[9] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[10] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[11] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[12] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[13] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[14] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[15] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||