[1] |
KOPYSCINSKI J, SCHILDHAUER T J, BIOLLAZ S M A. Production of synthetic natural gas (SNG) from coal and dry biomass-a technology review from 1950 to 2009[J]. Fuel, 2010, 89(8):1763-1783.
|
[2] |
KRAMER M, DUISBERG M, STOWE K, et al. Highly selective CO methanation catalysts for the purification of hydrogen-rich gas mixtures[J]. Journal of Catalysis, 2007, 251(2):410-422.
|
[3] |
姚玉芹, 刘思含, 胡宗元, 等. γ-Al2O3性质对钼基耐硫甲烷化催化剂活性的影响[J]. 石油化工, 2014, 43(7):754-758. YAO Y Q, LIU S H, HU Z Y, et al. Effects of alumina properties on the activity of Mo-based catalyst for sulfur-resistant methanation[J]. Petrochemical Technology, 2014, 43(7):754-758.
|
[4] |
GAO J, LIU Q, GU F, et al. Recent advances in methanation catalysts for the production of synthetic natural gas[J]. RSC Advances, 2015, 5(29):22759-22776.
|
[5] |
王光永, 徐绍平. 煤制替代/合成天然气技术的研究进展[J]. 石油化工, 2016, 45(1):1-9. WANG G Y, XU S P. Technological progresses in substitute/synthetic natural gas from coal[J]. Petrochemical Technology, 2016, 45(1):1-9.
|
[6] |
路霞, 陈世恒, 王万丽, 等. CO甲烷化Ni基催化剂的研究进展[J], 石油化工, 2010, 39(3):340-345. LU X, CHEN S H, WANG W L, et al. Progress in Ni-based catalysts for CO methanation[J]. Petrochemical Technology, 2010, 39(3):340-345.
|
[7] |
孟凡会, 常慧蓉, 李忠. Ni-Mn/Al2O3催化剂在浆态床中CO甲烷化催化性能[J]. 化工学报, 2014, 65(8):2997-3003. MENG F H, CHANG H R, LI Z. Catalytic performance of Ni-Mn/Al2O3 catalyst for CO methanation in slurry-bed reactor[J]. CIESC Journal, 2014, 65(8):2997-3003.
|
[8] |
CZEKAJ I, STRUIS R, WAMBACH J, et al. Sulphur poisoning of Ni catalysts used in the SNG production from biomass:computational studies[J]. Catalysis Today, 2011, 176(1):429-432.
|
[9] |
YUAN C, NAN Y, WANG X, et al. The SiO2 supported bimetallic Ni-Ru particles:a good sulfur-tolerant catalyst for methanation reaction[J]. Chemical Engineering Journal, 2015, 260(260):1-10.
|
[10] |
王玮涵, 李振花, 王保伟, 等. 耐硫甲烷化反应的研究进展[J]. 化工学报, 2015, 66(9):3357-3366. WANG W H, LI Z H, WANG B W, et al. Recent advances in sulfur-resistant methanation[J]. CIESC Journal, 2015, 66(9):3357-3366.
|
[11] |
WANG B, SHANG Y, DING G, et al. Effect of the ceria-alumina composite support on the Mo-based catalyst's sulfur-resistant activity for the synthetic natural gas process[J]. Reaction Kinetics, Mechanisms and Catalysis, 2012, 106(2):495-506.
|
[12] |
王保伟, 尚玉光, 丁国忠, 等. 铈铝复合载体对钼基催化剂耐硫甲烷化催化性能的研究[J]. 燃料化学学报, 2012, 40(11):1390-1396. WANG B W, SHANG Y G, DING G Z, et al. Ceria-alumina composite support on the sulfur-resistant methanation activity of Mo-based catalyst[J]. Journal of Fuel Chemistry and Technology, 2012, 40(11):1390-1396.
|
[13] |
JIANG M, WANG B, LV J, et al. Effect of sulfidation temperature on the catalytic activity of MoO3/CeO2-Al2O3 toward sulfur-resistant methanation[J]. Applied Catalysis A:General, 2013, 466:224-232.
|
[14] |
JIANG M, WANG B, YAO Y, et al. A comparative study of CeO2-Al2O3 support prepared with different methods and its application on MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation[J]. Applied Surface Science, 2013, 285(1):267-277.
|
[15] |
JIANG M, WANG B, YAO Y, et al. The role of the distribution of Ce species on MoO3/CeO2-Al2O3 catalysts in sulfur-resistant methanation[J]. Catalysis Communications, 2013, 35(35):32-35.
|
[16] |
FRANCK D, RIGOLE M, MICHEL G A, et al. Characterization of boria-alumina mixed oxides prepared by a sol-gel method(1):NMR characterization of the xerogels[J]. Chemistry of Materials, 2005, 17(9):2369-2377.
|
[17] |
CHAN K, LEE J J, BAE J S, et al. Hydrodesulfurization of DBT, 4-MDBT, and 4,6-DMDBT on fluorinated CoMoS/Al2O3 catalysts[J]. Applied Catalysis A:General, 2000, 200(1):233-242.
|
[18] |
USMAN, KUBOTA T, HIROMITSU I, et al. Effect of boron addition on the surface structure of Co-Mo/Al2O3 catalysts[J]. Journal of Catalysis, 2007, 247(1):78-85.
|
[19] |
MOHAMED L K, EI KADY F Y, SHABAN S A. The effect of boron on the activity of hydrotreating Co-Mo/Al2O3 catalyst[J]. Energy Sources, Part A:Recovery, Utilization and Environmental Effects, 2013, 35(7):659-670.
|
[20] |
USMAN U, TAKAKI M, KUBOTA T, et al. Effect of boron addition on a MoO3/Al2O3 catalyst:physico-chemical characterization[J]. Applied Catalysis A:General, 2005, 286(1):148-154.
|
[21] |
SURESH R, PONNUSWAMY V, MARIAPPAN R. Effect of annealing temperature on the microstructural, optical and electrical properties of CeO2 nanoparticles by chemical precipitation method[J]. Applied Surface Science, 2013, 273(273):457-464.
|
[22] |
JIANG M, WANG B, YAO Y, et al. Effect of stepwise sulfidation on a MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation[J]. Applied Catalysis A:General, 2014, 469(2):89-97. catalysts [J], Journal of Catalysis, 2007, 247(1): 78-85.
|
[19] |
MOHAMED L K, EI KADY F Y, SHABAN S A. The effect of boron on the activity of hydrotreating Co-Mo/Al2O3 catalyst[J], Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2013, 35(7): 659-670.
|
[20] |
USMAN U, TAKAKI M, KUBOTA T, et al. Effect of boron addition on a MoO3/Al2O3 catalyst: Physico- chemical characterization[J], Applied Catalysis A General, 2005, 286(1): 148-154.
|
[21] |
SURESH R, PONNUSWAMY V, MARIAPPAN R. Effect of annealing temperature on the microstructural, optical and electrical properties of CeO2 nanoparticles by chemical precipitation method[J], Applied Surface Science, 2013, 273(273): 457-464.
|
[22] |
JIANG M, WANG B, Yao Y, et al. Effect of stepwise sulfidation on a MoO3/CeO2-Al2O3 catalyst for sulfur- resistant methanation[J], Applied Catalysis A: General, 2014, 469(2): 89-97.
|