化工学报 ›› 2018, Vol. 69 ›› Issue (4): 1276-1287.DOI: 10.11949/j.issn.0438-1157.20170707
周魁斌, 刘娇艳, 蒋军成
收稿日期:
2017-06-01
修回日期:
2017-10-11
出版日期:
2018-04-05
发布日期:
2018-04-05
通讯作者:
周魁斌
基金资助:
国家重点研发计划项目(2016YFC0800100);国家自然科学基金项目(51506082)。
ZHOU Kuibin, LIU Jiaoyan, JIANG Juncheng
Received:
2017-06-01
Revised:
2017-10-11
Online:
2018-04-05
Published:
2018-04-05
Supported by:
supported by the National Key R&D Program of China (2016YFC0800100) and the National Natural Science Foundation of China (51506082).
摘要:
以高压可燃气体泄漏诱发的喷射火为研究对象,对泄漏过程中喷口处稳态气流状态参数变化及其被点燃之后的喷射火火焰形态与辐射热流场预测模型研究进展进行了综述。归类分析了基于理想气体状态方程和Abel-Noble状态方程的高压气体泄漏模型及其适用情况,并对不同浮力控制和动量控制范围的几种喷射火火焰几何尺寸模型进行了概括性总结,同时对不同火焰形态下的点源、多点源、固体以及线源4种热辐射模型进行了汇总,最终提出将3种模型耦合联用以建立适用于不同泄漏条件下喷射火热灾害分析预测方法。分析表明,该分析预测方法具有很好的适用性。
中图分类号:
周魁斌, 刘娇艳, 蒋军成. 高压可燃气体泄漏动力学过程与喷射火热灾害分析[J]. 化工学报, 2018, 69(4): 1276-1287.
ZHOU Kuibin, LIU Jiaoyan, JIANG Juncheng. Analyses on dynamical process of high pressure combustible gas leakage and thermal hazard of jet fire[J]. CIESC Journal, 2018, 69(4): 1276-1287.
[1] | BECKER H A, HOTTEL H C, WILLIAMS G C. The nozzle-fluid concentration field of the round, turbulent, free jet[J]. Journal of Fluid Mechanics, 1967, 30(2):285-303. |
[2] | ANTONIA R A, PRABHU A, STEPHENSON S E. Conditionally sampled measurements in a heated turbulent jet[J]. Journal of Fluid Mechanics, 1975, 72(3):455-480. |
[3] | VENKATARAMANI K S, TUTU N K, CHEVRAY R. Probability distributions in a round heated jet[J]. Physics of Fluids 1975, 18(11):1413-1420. |
[4] | BIRCH A D, BROWN D R, DODSON M G, et al. The structure and concentration decay of high pressure jets of natural gas[J]. Combustion Science and Technology, 1984, 36(5/6):249-261. |
[5] | BIRCH A D, HUGHES D J, SWAFFIELD F. Velocity decay of high pressure jets[J]. Combustion Science and Technology, 1987, 52(1/2/3):161-171. |
[6] | CHENOWETH D R, PAOLUCCI S. Compressible flow of a two-phase fluid between finite vessels(Ⅰ):Ideal carrier gas[J]. International Journal of Multiphase Flow, 1990, 16(6):1047-1069. |
[7] | CHENOWETH D R, PAOLUCCI S. Compressible flow of a two-phase fluid between finite vessels(Ⅱ):Abel-Noble carrier gas[J]. International Journal of Multiphase Flow, 1992, 5(5):669-689. |
[8] | SCHEFER R W, HOUF W G, WILLIAMS T C, et al. Characterization of high-pressure, underexpanded hydrogen-jet flames[J]. International Journal of Hydrogen Energy, 2007, 32(12):2081-2093. |
[9] | 董玉华, 周敬恩, 高惠临, 等. 长输管道稳态气体泄漏率的计算[J]. 油气储运, 2002, 21(8):11-15. DONG Y H, ZHOU J E, GAO H L, et al. Estimation of steady state gas release flow rate in long distance pipeline[J]. Oil & Gas Storage and Transportation, 2002, 21(8):11-15. |
[10] | 刘延雷, 徐平, 郑津洋, 等. 管道输运高压氢气与天然气的泄漏扩散数值模拟[J]. 太阳能学报, 2008, 29(10):1252-1255. LIU Y L, XU P, ZHENG J Y, et al. Numerical simulation on the dispersion of hydrogen and natural gas due to high pressured pipeline leakage[J]. Acta Energiae Solaris Sinica, 2008, 29(10):1252-1255. |
[11] | 徐平, 刘鹏飞, 刘延雷, 等. 高压储氢罐不同位置泄漏扩散的数值模拟研究[J]. 高校化学工程学报, 2008, 22(6):921-926. XU P, LIU P F, LIU Y L, et al. Numerical simulation on the leakage and diffusion of hydrogen due to high pressured storage tank failure at different positions[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(6):921-926. |
[12] | 余照, 袁杰红. 储氢罐泄漏扩散规律的数值仿真分析[J]. 化学工程与装备, 2008, (9):19-21. YU Z, YUAN J H. Simulation and analysis on hydrogen tank leaking[J]. Chemical Engineering & Equipment, 2008, (9):19-21. |
[13] | WOODWARD J L, MUDAN K S. Liquid and gas discharge rates through holes in process vessels[J]. Journal of Loss Prevention in the Process Industries, 1991, 4(3):161-165. |
[14] | 李雪芳, 毕景良, 柯道友. 高压氢气储存系统泄漏的热力学模型[J]. 清华大学学报(自然科学版), 2013, 53(4):503-508. LI X F, BI J L, KE D Y. Thermodynamic models of leaks from high-pressure hydrogen storage systems[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(4):503-508. |
[15] | 李雪芳, 毕景良, 林曦鹏, 等. 高压氢气泄漏扩散数值模拟[J]. 工程热物理学报, 2014, 35(12):2482-2485. LI X F, BI J L, LIN X P, et al. Numerical simulation of high pressure hydrogen release and dispersion[J]. Journal of Engineering Thermophysics, 2014, 35(12):2482-2485. |
[16] | HAWTHORNE W R, WEDDELL D S, HOTTEL H C. Mixing and combustion in turbulent gas jets[J]. Symposium on Combustion and Flame, and Explosion Phenomena, 1948, 3(1):266-288. |
[17] | HOTTEL H C, HAWTHORNE W R. Diffusion in laminar flame jets[J]. Symposium on Combustion & Flame & Explosion Phenomena, 1948, 3(1):254-266. |
[18] | BECKER H A, LIANG D. Visible length of vertical free turbulent diffusion flames[J]. Combustion and Flame, 1978, 32:115-137. |
[19] | BECKER H A, YAMAZAKI S, BECKER H A, et al. Entrainment, momentum flux and temperature in vertical free turbulent diffusion flames[J]. Combustion & Flame, 1978, 33(78):123-149. |
[20] | KALGHATGI G T. Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air[J]. Combustion Science and Technology, 1984, 41(1/2):17-29. |
[21] | SURIS A L, FLANKIN E V, SHORIN S N. Length of free diffusion flames[J]. Combustion, Explosion and Shock Waves, 1977, 13(4):459-462. |
[22] | SONJU O K, HUSTAD J. An experimental study of turbulent jet diffusion flames[J]. Norwegian Maritime Research, 1984, 4(12):2-11. |
[23] | PETERS N, GÖ TTGENS J. Scaling of buoyant turbulent jet diffusion flames[J]. Combustion and Flame, 1991, 85(1):206-214. |
[24] | COSTA M, PARENTE C, SANTOS A. Nitrogen oxides emissions from buoyancy and momentum controlled turbulent methane jet diffusion flames[J]. Experimental Thermal and Fluid Science, 2004, 28(7):729-734. |
[25] | SANTOS A, COSTA M. Reexamination of the scaling laws for NOx emissions from hydrocarbon turbulent jet diffusion flames[J]. Combustion and Flame, 2005, 142(1/2):160-169. |
[26] | KIRAN D Y, MISHRA D P. Experimental studies of flame stability and emission characteristics of simple LPG jet diffusion flame[J]. Fuel, 2007, 86(10/11):1545-1551. |
[27] | PALACIOS A, MUÑOZ M, CASAL J. Jet fires:an experimental study of the main geometrical features of the flame in subsonic and sonic regimes[J]. AIChE Journal, 2009, 55(1):256-263. |
[28] | ZUKOSKI E E, KUBOTA T, CETEGEN B. Entrainment in fire plumes[J]. Fire Safety Journal, 1981, 3(3):107-121. |
[29] | SUGAWA O, SAKAI K. Flame length and width produced by ejected propane gas fuel from a pipe[J]. Fire Science and Technology, 1997, 17(1):55-63. |
[30] | HESKESTAD G. On Q* and the dynamics of turbulent diffusion flames[J]. Fire Safety Journal, 1998, 30(3):215-227. |
[31] | DELICHATSIOS M A. Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships[J]. Combustion and Flame, 1993, 92(4):349-364. |
[32] | SCHEFER R W, HOUF W G, BOURNE B, et al. Spatial and radiative properties of an open-flame hydrogen plume[J]. International Journal of Hydrogen Energy, 2006, 31(10):1332-1340. |
[33] | MOGI T, HORIGUCHI S. Experimental study on the hazards of high-pressure hydrogen jet diffusion flames[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(1):45-51. |
[34] | STUDER E, JAMOIS D, JALLAIS S, et al. Properties of large-scale methane/hydrogen jet fires[J]. International Journal of Hydrogen Energy, 2009, 34(23):9611-9619. |
[35] | KALGHATGI G T. The visible shape and size of a turbulent hydrocarbon jet diffusion flame in a cross-wind[J]. Combustion & Flame, 1983, 52(1):91-106. |
[36] | HUANG R F, CHANG J M. The stability and visualized flame and flow structures of a combusting jet in cross-flow[J]. Combustion and Flame, 1994, 98(3):267-278. |
[37] | CHAMBERLAIN G A. Developments in design methods for predicting thermal radiation from flare[J]. Chemical Engineering Research & Design, 1987, 65(4):299-309. |
[38] | 王大庆, 高惠临, 霍春勇, 等. 天然气管道泄漏射流火焰形貌研究[J]. 油气储运, 2006, 25(2):47-49. WANG D Q, GAO H L, HUO C Y, et al. Study on the jet-fire shapes of gas pipeline[J]. Oil & Gas Storage and Transportation, 2006, 25(2):47-49. |
[39] | 王兆芹, 冯文兴, 程五一. 高压输气管道喷射火几何尺寸和危险半径的研究[J]. 安全与环境工程, 2009, 16(5):108-110. WANG Z Q, FENG W X, CHENG W Y. Analysis of geometry and hazardous radius of jet flame from high-pressure natural gas pipeline[J]. Safety and Environmental Engineering, 2009, 16(5):108-110. |
[40] | MAJESKI A J, WILSON D J, KOSTIUK L W. Predicting the length of low-momentum jet diffusion flames in crossflow[J]. Combustion Science and Technology, 2004, 176(12):2001-2025. |
[41] | 林树宝. 外界风下低动量湍流射流扩散火焰图像特征与燃烧特性[D]. 合肥:中国科学技术大学, 2015. LIN S B. Low-momentum turbulent jet diffusion flame's image parameters and combustion characteristics[D]. Hefei:University of Science and Technology of China, 2015. |
[42] | 门庆民. 不同低环境压力下扩散射流火焰高度的实验研究[J]. 消防科学与技术, 2013, 32(10):1067-1069. MEN Q M. Experimental study on characteristics of the flame height of jet diffusion flame under different pressure conditions[J]. Fire Sci. Technol., 2013, 32(10):1067-1069. |
[43] | 王强. 不同环境条件下扩散射流火焰形态特征与推举、吹熄行为研究[D]. 合肥:中国科学技术大学, 2015. WANG Q. Studies on flame shape characteristics and life-off, blow-out behaviors of jet diffusion flames under different environmental conditions[D]. Hefei:University of Science and Technology of China, 2015. |
[44] | MCCAFFREY B J. Momentum diffusion flame characteristics and the effects of water spray[J]. Combustion Science and Technology, 1989, 63(4/5/6):315-335. |
[45] | BAGSTER D F, SCHUBACH S A. The prediction of jet-fire dimensions[J]. Journal of Loss Prevention in the Process Industries, 1996, 9(3):241-245. |
[46] | IMAMURA T, HAMADA S, MOGI T, et al. Experimental investigation on the thermal properties of hydrogen jet flame and hot currents in the downstream region[J]. International Journal of Hydrogen Energy, 2008, 33(13):3426-3435. |
[47] | PALACIOS A, CASAL J. Assessment of the shape of vertical jet fires[J]. Fuel, 2011, 90(2):824-833. |
[48] | SCHULLER R B, HUSTAD J, NYLUND J, et al. Effect of nozzle geometry on burning subsonic hydrocarbon jets[J]. Am. Soc. Mech. Eng., 1983, 25:33-36. |
[49] | TURNS S R, MYHR F H. Oxides of nitrogen emissions from turbulent jet flames(part Ⅰ):Fuel effects and flame radiation[J]. Combustion and Flame, 1991, 87(3/4):319-335. |
[50] | PETERS N, WILLIAMS F A. Liftoff characteristics of turbulent jet diffusion flames[J]. AIAA Journal, 1983, 21(3):423-429. |
[51] | GOPALASWAMI N, LIU Y, LABOUREUR D M, et al. Experimental study on propane jet fire hazards:comparison of main geometrical features with empirical models[J]. Journal of Loss Prevention in the Process Industries, 2016, 41:365-375. |
[52] | ZHOU K B, JIANG J C. Thermal radiation from vertical turbulent jet flame:line source model[J]. Journal of Heat Transfer, 2015, 138(4):042701. |
[53] | ZHOU K B, LIU J Y, JIANG J C. Prediction of radiant heat flux from horizontal propane jet fire[J]. Applied Thermal Engineering, 2016, 106:634-639. |
[54] | MUDAN K S. Thermal radiation hazards from hydrocarbon pool fires[J]. Progress in Energy & Combustion Science, 1984, 10(1):59-80. |
[55] | HANKINSON G, LOWESMITH B J. A consideration of methods of determining the radiative characteristics of jet fires[J]. Combustion & Flame, 2012, 159(3):1165-1177. |
[56] | 王曰燕, 罗金恒, 赵新伟, 等. 天然气输送管道火灾事故危险分析[J]. 天然气与石油, 2005, 23(3):34-36. WANG Y Y, LUO J H, ZHAO X W, et al. Analysis on hazardous fires in natural gas pipelines[J]. Nat. Gas Oil, 2005, 23(3):34-36. |
[57] | 沙锡东, 姜虹. LPG喷射火灾危害的研究和分析[J]. 工业安全与环保, 2010, 36(11):46-48. SHA X D, JIANG H. Researches and analyses of LPG jet fire hazards[J]. Industrial Safety and Environmental Protection, 2010, 36(11):46-48. |
[58] | 张网. 以"点源"模型计算可燃气体喷射火的伤害范围[C]//中国消防协会科学技术年会. 北京:中国科学技术出版社, 2011:197-200. ZHANG W. Calculate the damage range of combustible gas jet fire by using point source model[C]//Proceedings of the Annual Meeting of Sci. Technol. of CFPA. Beijing:China Science and Technology Press, 2011:197-200. |
[59] | LOWESMITH B J, HANKINSON G. Large scale high pressure jet fires involving natural gas and natural gas/hydrogen mixtures[J]. Process Safety & Environmental Protection, 2012, 90(2):108-120. |
[60] | SIVATHANU Y R, GORE J P. Total radiative heat loss in jet flames from single point radiative flux measurements[J]. Combustion and Flame, 1993, 94(3):265-270. |
[61] | MUDAN K S. Geometric view factors for thermal radiation hazard assessment[J]. Fire Safety Journal, 1987, 12(2):89-96. |
[62] | MERCEDES G M, MIGUEL M, JOAQUIM C. Radiant heat from propane jet fires[J]. Experimental Thermal and Fluid Science, 2010, 34(3):323-329. |
[63] | PALACIOS A, MUÑOZ M, DARBRA R M, et al. Thermal radiation from vertical jet fires[J]. Fire Safety Journal, 2012, 51:93-101. |
[64] | BAHRAMI Z, COOK J, WHITEHOUSE R J. A comprehensive program for calculation of flame radiation levels[J]. Journal of Loss Prevention in the Process Industries, 1990, 3(1):150-155. |
[65] | MOLINA A, SCHEFER R W, HOUF W G. Radiative fraction and optical thickness in large-scale hydrogen-jet fires[J]. Proceedings of the Combustion Institute, 2007, 31(2):2565-2572. |
[66] | MERCEDES G M, MIGUEL M, JOAQUIM C. Axial temperature distribution in vertical jet fires[J]. Journal of Hazardous Materials, 2009, 172(1):54. |
[67] | 陈国华, 黄庭枫, 梁栋. 分区域-多点源的高架火炬安全距离计算新模型[J]. 天然气工业, 2013, 33(12):25. CHEN G H, HUANG T F, LIANG D. A new safety distance calculation model of vertical jet fires based on sub-regions and multi-point sources[J]. Natural Gas Industry, 2013, 33(12):25. |
[68] | National Institute of Standards and Technology. Thermal radiation from large pool fires[R]. Gaithersburg,MD, USA:NIST, 2000. |
[69] | JO Y D, AHN B J. A method of quantitative risk assessment for transmission pipeline carrying natural gas[J]. Journal of Hazardous Materials, 2005, 123(1/2/3):1. |
[70] | LOWESMITH B J, HANKINSON G, ACTON M R, et al. An overview of the nature of hydrocarbon jet fire hazards in the oil and gas industry and a simplified approach to assessing the hazards[J]. Process Safety & Environmental Protection, 2007, 85(3):207-220. |
[71] | COOK D K, FAIRWEATHER M, HAMMONDS J, et al. Size and radiative characteristics of natural gas flares(Ⅱ):Empirical model[J]. Chemical Engineering Research & Design, 1987, 65(4):318-325. |
[72] | HOUF W, SCHEFER R. Predicting radiative heat fluxes and flammability envelopes from unintended releases of hydrogen[J]. International Journal of Hydrogen Energy, 2007, 32(1):136-151. |
[73] | SHOKRI M, BEYLER C L. Radiation from large pool fires[J]. Journal of Fire Protection Engineering, 1989, 1(1):141-149. |
[74] | NGAI E Y, FUHRHOP R, CHEN J R, et al. CGA G-13 large-scale silane release tests(Ⅰ):Silane jet flame impingement tests and thermal radiation measurement[J]. Journal of Loss Prevention in the Process Industries, 2014, 36:478-487. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[5] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[6] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[7] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[8] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[9] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
[10] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[11] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[12] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[13] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[14] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[15] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||