化工学报 ›› 2018, Vol. 69 ›› Issue (4): 1261-1275.DOI: 10.11949/j.issn.0438-1157.20170997
刘瑞霞1, 贺滨1, 罗琛2, 代飞1, 李自航1, 张瑞锐1
收稿日期:
2017-07-28
修回日期:
2017-11-13
出版日期:
2018-04-05
发布日期:
2018-04-05
通讯作者:
刘瑞霞
基金资助:
国家重点研发计划项目(2017YFA0206803);中国科学院重点部署项目(KFZD-SW-413)。
LIU Ruixia1, HE Bin1, LUO Chen2, DAI Fei1, LI Zihang1, ZHANG Ruirui1
Received:
2017-07-28
Revised:
2017-11-13
Online:
2018-04-05
Published:
2018-04-05
Supported by:
supported by the National Key Research and Development Program of China (2017YFA0206803) and the Key Program of the Chinese Academy of Sciences(KFZD-SW-413).
摘要:
钒磷氧(VPO)是一种重要的复合氧化物,在低链烷烃选择性氧化及氨氧化等反应中表现出优异的催化性能。VPO催化剂组成结构十分复杂,其晶相组成、表面形貌、酸强度等与制备方法有很大的关系,催化剂的制备方法也很大程度上影响着其催化性能。综述了VPO的不同制备方法;并对其主要晶型及特征、晶相之间的转化进行了系统分析,重点探讨了对该催化剂性能强化方法和方式的研究进展,对VPO催化剂的主要应用做了全面的概述,指出了VPO催化剂研究中存在的问题以及今后发展的方向和目标。采用先进的原位表征手段结合理论模拟计算揭示了VPO催化的构效关系,探索了VPO催化剂的新型合成方法,结合现代纳米材料理论,开发了高性能的纳微结构VPO催化剂。
中图分类号:
刘瑞霞, 贺滨, 罗琛, 代飞, 李自航, 张瑞锐. 钒磷氧复合氧化物及其在催化领域的应用[J]. 化工学报, 2018, 69(4): 1261-1275.
LIU Ruixia, HE Bin, LUO Chen, DAI Fei, LI Zihang, ZHANG Ruirui. Vanadium phosphorous oxide and its catalytic application[J]. CIESC Journal, 2018, 69(4): 1261-1275.
[1] | VALERO-ROMERO M J, CABRERA-MOLINA A, GUERRERO-PEREZ M O, et al. Carbon materials as template for the preparation of mixed oxides with controlled morphology and porous structure[J]. Catalysis Today, 2014, 227:233-241. |
[2] | CHIU C C, THOMAS V, ZHAO L L, et al. Structure and electronic properties of MoVO type mixed-metal oxides-a combined view by experiment and theory[J]. Dalton Transactions, 2015, 44(31):13778-13795. |
[3] | MARTIAL R, MICHEL B, KHALID K, et al. MoVO-based catalysts for the oxidation of ethane to ethylene and acetic acid[J]. Applied Catalysis A:General, 2006, 308:62-74. |
[4] | KIM B G, JU W D, KIM I, et al. Performance of vanadium-molybdenum mixed oxide catalysts in selective oxidation of hydrogen sulfide containing excess water and ammonia[J]. Solid State Ionics, 2004, 172(1/2/3/4):135-138. |
[5] | CHU B Z, AN H, NIJHUIS T A, et al. A self-redox pure-phase M1 MoVNbTeOx/CeO2 nanocomposite as a highly active catalyst for oxidative dehydrogenation of ethane[J]. Journal of Catalysis, 2015, 329:471-478. |
[6] | KUBE P, FRANK B, WRABETZ S, et al. Functional analysis of catalysts for lower alkane oxidation[J]. ChemCatChem, 2017, 9:573-585. |
[7] | WANG C M, LIN S Y, KAO K S, et al. Microstructural and electrical properties of CaTiO3-CaCu3Ti4O12 ceramics[J]. Journal of Alloys and Compounds, 2010, 491(1/2):423-430. |
[8] | YANG X F, FU J X, JIN C J, et al. Formation mechanism of CaTiO3 hollow crystals with different microstructures[J]. Journal of American Chemical Society, 2010, 132:14279-14287. |
[9] | DAI S, ZHANG S Y, KATZ M B, et al. In situ observation of Rh-CaTiO3 catalysts during reduction and oxidation treatments by transmission electron microscopy[J]. ACS Catalysis, 2017, 7(3):1579-1582. |
[10] | VAN AERT S, TURNER S, DELVILLE R, et al. Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy[J]. Advanced Materials, 2012, 24(4):523-527. |
[11] | KUMAR Y, CHIRAGE M. Highest coercivity and considerable saturation magnetization of CoFe2O4 nanoparticles with tunable band gap prepared by thermal decomposition approach[J]. Journal of Materials Science, 2017, 52(9):4840-4851. |
[12] | MANNA J, AKBAYRAK S, OZKAR S. Palladium(0) nanoparticles supported on polydopamine coated CoFe2O4 as highly active, magnetically isolable and reusable catalyst for hydrogen generation from the hydrolysis of ammonia borane[J]. Applied Catalysis B:Environmental, 2017, 208:104-115. |
[13] | ZAZHIGALOV V A, DIYUK E A, SIDORCHUK V V. Development of VPO catalysts supported on mesoporous modified material based on an aerosil gel[J]. Kinetics and Catalysis, 2014, 55(3):380-389. |
[14] | JANSEN W P A, RUITENBEEK M, DENIER V D G A W, et al. New Insights into the nature of the active phase of VPO catalysts-a quantitative static LEIS study[J]. Journal of Catalysis, 2000, 196(2):379-387. |
[15] | WU H Y, JIN P, SUN Y F, et al. Enhancing catalytic performance of phosphorus-modified ceria supported VPO catalysts for n-butane oxidation[J]. Journal of Molecular Catalysis A:Chemical, 2016, 414:1-8. |
[16] | SPIVEY J J, AGARWAL S K, CAVANI F, et al. Selective oxidations of C4 paraffins[J]. Catalysis, 1994, 11:264-317. |
[17] | TRUKHAN S N, YUDANOV V F, MART'YANOV O N. The effect of clustering of VO2+ ions in sub-and supercritical water. An in situ EPR study[J]. Russian Journal of Physical Chemistry B, 2014, 7(8):924-931. |
[18] | BEHERA G C, BISWAL N, PARIDA K, Unexpected rapid photo-catalytic decolourisation/degradation of organic pollutants over highly active hetero junction based vanadium phosphate catalyst[J]. Catalysis Today, 2017, 284:84-91. |
[19] | BERGMAN R I, PRINCETON N J, NORMAN W F, et al. Production of maleic anhydride by oxidation of n-butane:US3293268[P]. 1966-12-20. |
[20] | 陈诵英, 王琴.固体催化剂制备原理与技术[M]. 北京:化学工业出版社, 2012:435. CHEN S Y, WANG Q. Scientific Fundamentals and Technologies for Preparation of Solid Catalysts[M]. Beijing:Chemical Industry Press, 2012:435. |
[21] | HUTCHINGS G J. Vanadium phosphate:a new look at the active components of catalysts for the oxidation of butane to maleic anhydride[J]. Journal of Materials Chemistry, 2004, 14(23):3385-3395. |
[22] | HUTCHINGS G J. Characterization of variations in vanadium phosphate catalyst microstructure with preparation route[J]. Journal of Catalysis, 1996, 162:31-47. |
[23] | ELLISON I J, HUTCHINGS G J, SANANES M T, et al. Control of the composition and morphology of vanadium phosphate catalyst precursors from alcohol treatment of VOPO4·2H2O[J]. Journal of the Chemical Society-Chemical Communication, 1994, 9:1003-1004. |
[24] | O'MAHONY L. Crystallisation of VOHPO4·0.5H2O[J]. Applied Catalysis A:General, 2003, 253(2):409-416. |
[25] | YAMAMOTO N, HIYOSHI N, OKUHARA T. Thin-layered sheets of VOHPO4·0.5H2O prepared from VOPO4·2H2O by intercalation-exfoliation-reduction in alcohol[J]. Chemistry of Materials, 2002, 14:3882-3888. |
[26] | MIQUEL F, BORDES E, KATZ J L. Flame generation of two new precursors of vanadyl pyrophosphate[J]. Journal of Solid State Chemistry, 1996, 124:95-103. |
[27] | KAMIYA Y, NISHIKAWA E, SATSUMA A, et al. Highly porous vanadium phosphorus oxides derived from vanadyl n-butylphosphate[J]. Microporous and Mesoporous Materials, 2002, 54:277-283 |
[28] | HUTCHINGS G J, BARTLEY J K, WEBSTER J M, et al. Amorphous vanadium phosphate catalysts from supercritical antisolvent precipitation[J]. Journal of Catalysis, 2001, 197(2):232-235. |
[29] | BERENGUER R, FORNELLS J, GARCÍA-MATEOS F J, et al. Novel synthesis method of porous VPO catalysts with fibrous structure by Electrospinning[J]. Catalysis Today, 2016, 277:266-273. |
[30] | HIDEO NUMATA T O. Redox features of β-VOPO catalyst using 18O tracer and laser Raman spectroscopy[J]. Journal of Molecular Catalysis A:Chemical, 1998, 130:261-269. |
[31] | ZANTHOFF H W, SCHULTA M S, BUCHHOLZ S A, et al. On the active role of water during partial oxidation of n-butane to maleic anhydride over (VO)2P2O7 catalysts[J]. Applied Catalysis A:General, 1998, 172:49-58. |
[32] | GRIESEL L, BARTLEY J K, WELLS R P K, et al. Preparation of vanadium phosphate catalysts from VOPO4·2H2O:effect of VOPO4·2H2O preparation on catalyst performance[J]. Journal of Molecular Catalysis A:Chemical, 2004, 220(1):113-119. |
[33] | TACHEZ M, THEOBOLD F. A structural explanation for the polymorphism of the α form of anhydrous vanadyl phosphate[J]. J. Solid State Chemistry, 1981, 40(3):280-283. |
[34] | AMOROS P, MARCOS M D, ROCA M, et al. Crystal structure of a new polytype in the V-P-O system:is ω-VOPO4 a dynamically stabilized metastable network[J]. Journal of Physics and Chemistry of Solids, 2001, 62:1393-1399. |
[35] | WENG W W, OTAIBI R A, ALHUMAIMESS M, et al. Controlling vanadium phosphate catalyst precursor morphology by adding alkane solvents in the reduction step of VOPO4·2H2O to VOHPO4·0.5H2O[J]. Journal of Materials Chemistry, 2011, 21(40):16136-16146. |
[36] | JOHNSON J W, JACOBSON D C, JACOBSON A J, et al. Preparation and characterization of VO(HPO4)·0.5H2O and its topotactic transformation to (VO)2P2O7[J]. Journal of American Chemical Society, 1984, 106:8123-8128. |
[37] | HIROI Z, AZUMA M, FUJISHIRO Y, et al. Structural study of the quantum-spin chain compound (VO)2P2O7[J]. Journal of Solid State Chemistry, 1999, 146:369-379. |
[38] | 贾雪飞, 张东顺. 正丁烷选择氧化制顺酐钒磷氧催化剂晶相结构的研究进展[J]. 石油化工, 2016, 45(6):749-755. JIA X F, ZHANG D S. Progresses in research for VPO catalysts used in selective oxidation of n-butane to maleic anhydride[J]. Petrochemical Technology, 2016, 45(6):749-755. |
[39] | GULIANTS V V, BENZGER J B, SUNDARESAN S, et al. The effect of the phase composition of model VPO catalysts for partial oxidation of n-butane[J]. Catalysis Today, 1996, 28:275-295. |
[40] | PRATIBHA L G, KOURTAKIS K. Solid-state defect mechanism in vanadyl pyrophosphate catalysts:implications for selective oxidation[J]. Science, 1995, 267(3):661-663. |
[41] | O'MAHONY L, CURTIN T, ZEMLYANOV D, et al. Surface species during the crystallization of VOHPO4·0.5H2O[J]. Journal of Catalysis, 2004, 227(2):270-281. |
[42] | GAUTIER R, GAUTIER R, HERNANDEZ O, et al. DFT-assisted structure determination of alpha1-and alpha2-VOPO4:new insights into the understanding of the catalytic performances of vanadium phosphates[J]. Dalton Transactions, 2013, 42(22):8124-8131. |
[43] | 姜浩锡, 李永辉, 刘潇雅. 丁烷氧化制顺丁烯二酸酐催化剂活性相的研究[J]. 化学工业与工程, 2004, 21(1):29-32. JIANG H X, LI Y H, LIU X Y. Study on active phases of the catalyst for butane oxidation to maleic anhydride[J]. Chemical Industry and Engineering, 2004, 21(1):29-32. |
[44] | XUE Z Y, SCHRADER G L. In situ laser Raman spectroscopy studies of VPO catalyst transformations[J]. The Journal of Physical Chemistry B, 1999, 103(44):9459-9467. |
[45] | KOYANO G, TAKAYA S, MISONO M. In situ vibrational spectroscopic investigation of surface redox process of vanadyl pyrophosphate[J]. Journal of Molecular Catalysis A:Chemical, 2000, 155:31-41. |
[46] | CALDARELLI A, CAVANI F, FOLCO F, et al. The design of a new ZrO2-supported V/P/O catalyst for n-butane oxidation to maleic anhydride:the build-up of the active phase during thermal treatment[J]. Catalysis Today, 2010, 157(1/2/3/4):204-210. |
[47] | HIYOSHI N, YAMAMOTO N, RYUMON N, et al. Selective oxidation of n-butane in the presence of vanadyl pyrophosphates synthesized by intercalation-exfoliation-reduction of layered VOPO4·2H2O in 2-butanol[J]. Journal of Catalysis, 2004, 221(1):225-233. |
[48] | HUTCHINGS G J. Chemically induced fast solid-state transitions of ω-VOPO4 in vanadium phosphate catalysts[J]. Science, 2006, 313(1):1270-1273. |
[49] | 刘先明, 李春福, 高浩华, 等. 正丁烷选择性氧化制顺酐VPO催化剂的研究进展[J]. 材料导报, 2008, 22(4):57-61. LIU X M, LI C F, GAO H H, et al. Research progress in VPO catalyst on selective oxidation of n-butane to maleic anhydride[J]. Materials Review, 2008, 22(4):57-61. |
[50] | HUTCHINGS G J. Effect of promoters and reactant concentration on the selective oxidation of n-butane to maleic anhydride using vanadium phosphorus oxide catalysts[J]. Applied Catalysis A:General, 1991, 72(1):1-32. |
[51] | LUCIANI S, CAVANI F, DAL SANTO V, et al. The mechanism of surface doping in vanadyl pyrophosphate, catalyst for n-butane oxidation to maleic anhydride:the role of Au promoter[J]. Catalysis Today, 2011, 169(1):200-206. |
[52] | BEHERA G C, PARIDA K M, DAS D P. Facile fabrication of aluminum-promoted vanadium phosphate:a highly active heterogeneous catalyst for isopropylation of toluene to cymene[J]. Journal of Catalysis, 2012, 289:190-198. |
[53] | TAUFIQ-YAP Y H, NURUL SUZIANA N M, HUSSEIN M Z. Influences of the various metal dopants for the nanosized vanadium phosphate catalysts[J]. Catalysis Letters, 2010, 141(1):136-148. |
[54] | SHEN S K, ZHOU J P, ZHANG F S, et al. Effect of Ce-Fe oxides additives on performance of VPO catalyst for n-butane oxidation to maleic anhydride in the absence of gas-phase oxygen[J]. Catalysis Today, 2002, 74(1):37-43. |
[55] | KOURTAKIS K, WANG L, THOMPSON E, et al. Direct grafting of alkoxide promoters on vanadium hydrogen phosphate precursors:improved catalysts for the selective oxidation of n-butane[J]. Applied Catalysis A:General, 2010, 376(1/2):40-46. |
[56] | MAHDAVI V, HASHEMINASAB H R. Vanadium phosphorus oxide catalyst promoted by cobalt doping for mild oxidation of benzyl alcohol to benzaldehyde in the liquid phase[J]. Applied Catalysis A:General, 2014, 482:189-197. |
[57] | LEDOUX M J, CROUZET C, PHAM-HUU C, et al. High-yield butane to maleic anhydride direct oxidation on vanadyl pyrophosphate supported on heat-conductive materials:β-SiC, Si3N4, and BN[J]. Journal of Catalysis, 2001, 203(2):495-508. |
[58] | JIAN J, YOU K, LUO Q, et al. Supported Ni-Al-VPO/MCM-41 as efficient and stable catalysts for highly selective preparation of adipic acid from cyclohexane with NO2[J]. Industrial & Engineering Chemistry Research, 2016, 55(13):3729-3735. |
[59] | XIAO C Y, CHEN X, WANG Z Y, et al. The novel and highly selective fumed silica-supported VPO for partial oxidation of n-butane to maleic anhydride[J]. Catalysis Today, 2004, 93/94/95:223-228. |
[60] | KALEVARU V N, MADAAN N, MARTIN A. Synthesis, characterization and catalytic performance of titania supported VPO catalysts for the ammoxidation of 3-picoline[J]. Applied Catalysis A:General, 2011, 391(1/2):52-62. |
[61] | 师慧敏, 陈雅萍. 正丁烷氧化法制顺酐钒磷氧催化剂的研究进展[J]. 石油化工, 2013, 42(9):1044-1055. SHI H M, CHEN Y P. Research progresses in vanadium phosphorus oxide catalysts for selective oxidation of n-butane to maleic anhydride[J]. Petrochemical Technology, 2013, 42(9):1044-1055. |
[62] | ARUNABHA D, SAKTHIVEL S, KUMAR S J, et al. Process for the liquid phase selective hydroxylation of benzene:US7586014[P]. 2008-9-25. |
[63] | 刘俊华, 刘艳侠, 徐贤伦. 改性VPO催化剂催化温和条件下苯乙烯液相选择性氧化[J]. 催化学报, 2007, 28(11):1003-1008. LIU J H, LIU Y X, XU X L. Liquid-phase selective oxidation of styrene under mild conditions over modified VPO catalyst[J]. Chinese Journal of Catalysis, 2007, 28(11):1003-1008. |
[64] | AI M. Effect of phosphorus on the oxidation selectivity of MoO3-based catalysts[J]. Polyhedron, 1986, 5(1):103-105. |
[65] | AI M. Oxidation of propane to acrylic acid[J]. Catalysis Today, 1992, 13(4):679-684. |
[66] | 程桦, 韩一帆, 王怀明. 在Ce-VPO催化剂上丙烷一步氧化制丙烯酸[J]. 石油化工, 1999, 28(12):803-807. CHENG H, HAN Y F, WANG H M. Direct oxidation of propane to acrylic acid over Ce doped V-P-O catalyst[J]. Petrochemical Technology, 1999, 28(12):803-807. |
[67] | JIANG Q, ZHAO J, LI X K, et al. Water modification of PEG-derived VPO for the partial oxidation of propane[J]. Applied Catalysis A:General, 2008, 341(1/2):70-76. |
[68] | PILLAI U R, SAHLE-DEMESSIE E. Vanadium phosphorus oxide as an efficient catalyst for hydrocarbon oxidations using hydrogen peroxide[J]. New Journal of Chemistry, 2003, 27(3):525-528. |
[69] | PILLAI U R, SAHLE-DEMESSIE E. A highly efficient oxidation of cyclohexane over VPO catalysts using hydrogen peroxide[J]. Chemical Communications, 2002, 18:2142-2143. |
[70] | MARTIN A, LUCKE B, SEEBOTH H. Ammoxidation of picolines on vanadium phosphate catalysts[J]. Applied Catalysis, 1989, 49:205-211. |
[71] | 卢晗锋, 黄海凤, 陈银飞, 等. 甲苯氨氧化合成苯甲腈VPO催化剂研究[J]. 高校化学工程学报, 2002, 16(5):509-510. LU H F. HUANG H F, CHEN Y F, et al. Research of ammoxidation of methylbenzene on vanadium phosphate catalysts[J]. Journal of Chemical Engineering of Chinese Universities, 2002, 16(5):509-510. |
[72] | SÁDABA I, LIMA S, VALENTE A A, et al. Catalytic dehydration of xylose to furfural:vanadyl pyrophosphate as source of active soluble species[J]. Carbohydrate Research, 2011, 346(17):2785-2791. |
[73] | WANG F, DUBOIS J L, UEDA W. Catalytic performance of vanadium pyrophosphate oxides (VPO) in the oxidative dehydration of glycerol[J]. Applied Catalysis A:General, 2010, 376(1/2):25-32. |
[1] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[2] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[3] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[4] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[7] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[8] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[9] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[10] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[11] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[12] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[13] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[14] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[15] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||